Observation of neoclassical Ware pinch in core plasma of the Tore-Supra tokamak.

A. Sirinelli R. Sabot P. Hennequin¹ X. Garbet G.T. Hoang C. Bourdelle J.L. Ségui

Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache, 13108 Saint-Paul-lez-Durance, France.

¹Laboratoire de Physique et Technologie des Plasmas, CNRS-École Polytechnique, 91128 Palaiseau Cedex, France.

11th EU-US Transport Task Force Workshop, Marseille 2006

Outline

- Experimental observation of central pinch
- Transport coefficients calculation
- Modification of the density profile and the fluctuation level with RF heatings
- Large density plateau understanding

Mexican hat on density profiles

Common feature on Tore-Supra ohmic shots

- Central bump:
 - Up to 10 % of central density
 - Width of 15 cm
- Association

- Density plateau:
 - Wider than the temperature
 - Width up to 35 cm

Temporal evolution of the Mexican hat

A. Sirinelli - 11th EU-US TTF, Marseille 2006

Flux calculation

From the density conservation law in a cylindrical geometry:

$$\partial_t n_e + \nabla \Gamma = 0 \quad \Rightarrow \quad \Gamma_r = \frac{1}{r} \int_0^r r' \partial_t n_e \, \mathrm{d}r'$$

 $\Gamma_r(r, t)$ is determined from the experimental profiles.

Knowing $\Gamma_r(r, t)$ and $n_e(r, t)$, *D* and *V* are calculated from :

$$\frac{\Gamma_r}{n_e} = -D\frac{\nabla n_e}{n_e} + V$$

A. Sirinelli - 11th EU-US TTF, Marseille 2006

Transport coefficients

Comparison between experimentally deduced coefficients and NCLASS calculation.

- D: much larger than neoclassic as expected
- V: same order as the neoclassical theory

Fluctuation level

Ohmic discharges:

- Drop of the fluctuation level inside q = 1
- Lower turbulent diffusion in the plasma center

RF Heatings

- Ohmic:
 - Very low $\delta n/n$ inside
 - *q* = 1
- LHCD:
 - Slight increase of δn/n
 - $E_{\phi} \approx 0$: Ware pinch vanishes

 $(V_W \propto E_\phi/B_ heta)$

- ► ICRH:
 - Large increase of δn/n
 - Increase of the turbulent diffusion

Density plateau goes past the q = 1 surface

 I_p scan:

- Plateau always goes over q = 1
- ▶ Peak width saturate to 15 cm Plateau expansion still not fully understood. Flattening of the qprofile around q = 1 ?

[de Blank, Phys. Fluids B, 1991]

Conclusions

- Tore-Supra ohmic shots present a central density peaking
- This Mexican hat can be explained by:
 - Ware pinch effect
 - Low turbulent diffusion
- When $E_{\phi} \approx 0$ the central peak vanishes
 - \rightarrow Ware pinch signature
- For higher level of $\delta n/n$: no more central peak \rightarrow increase of the turbulent diffusion
- Density plateau extends beyond q = 1 surface

Contour plot of the core evolution during sawtooth activity

 I_p scans

- Plateau width linked with q = 1 position
- Bump width seems to saturate
- No *Mexican hat* for $I_p < 0.6$ MA