ION ITB CHARACTERIZATION USING Te PERTURBATIONS

by

J.C. DeBoo, T.C. Luce, C.C. Petty,

K.H. Burrell, and M. Gildner

Presented at the 11th EU-US Transport Task Force Workshop Marseille, France September 4-7, 2006

MOTIVATION and APPROACH

- Motivation: Study the characteristics of an ion Internal Transport Barrier (ITB)
 - Is the barrier of finite width or does it extend in to the plasma center?
 - How wide is the barrier if of finite width?
- Approach: Use modulated ECH to create localized heat pulses
 - have observed in the past that electron heat pulses produce a response in the ion channel
 - apply modulated ECH resonant outside the ITB
 - study ion heat pulses as they propagate through the ITB

TARGET DISCHARGE: QH-MODE WITH A STEADY ION ITB (QDB)

 QDB has an ion ITB with characteristics most desirable for employing heat pulse propagation techniques

QDB characteristics

- steady state ITB allows FFT analysis of heat pulses over many modulation periods
- no ELMs or other transient events permits small perturbations to be employed ($\delta T_e/T_e \sim 3$ 5 % produces $\delta T_i/T_i \sim 2$ 3 %)

Focus on two cases

- Standard QDB with 4 sources of NBI, $P_{NBI} \sim 9 MW$
- Reduce $P_{NBI} \sim 5$ MW to try and move the location of the ITB

QDB Discharge Shape Studied Is An Upper Single Null Divertor

- •1.3 MA, 2.0 T, 2 ×10¹⁹ m⁻³
- P_{NBI}= 5.0 and 9.2 MW
 counter injection
- Sawtooth and ELM free
 - $-q_0 = 1.1-1.2$ with monotonic profile
- ECH Resonance at ρ_{FCH} = 0.7
 - $-f_{\text{mod}} = 25 \text{ Hz}$
 - $-P_{ECH}=1-2MW$

ELECTRON TEMPERATURE HEAT PULSES PRODUCED BY ECH

- T_e heat pulses are characterized by their amplitude and phase
- Produced with ECH power modulated at 25 Hz and deposited at ρ = 0.7
- Small perturbations,
 δT_e/T_e ~ 2 3 %
- Amplitude peak and phase minimum occur at ρ_{ECH}
- T_e heat pulses produced a response in T_i

TYPICAL T_i RESPONSE TO δT_e IN AN L-MODE DISCHARGE

- T_i amplitude is minimum at ρ_{ECH} and increases toward the plasma core even though δT_e decreases as the pulse propagates to the plasma core ⇒ not just e-i collisional coupling
- At ρ_{ECH} the ion response is typically about 180° out of phase with the electron response ($\phi_i \sim \phi_e$ +180), when T_e increases locally, T_i decreases
- This behavior is consistent with the impact of changes in T_e/T_i on ITG mode activity

ION RESPONSE IN QDB

- Local minimum in δT_i may indicate localized ion transport barrier (shaded region)
- Location of ITB is not too sensitive to ∇T_i or V_φ since location does not vary for 9 MW NBI compared to 5 MW NBI case

ITB CENTERED AT ρ = 0.5 AND IS ~ 15 cm WIDE

• Decrease in δT_i is expected in region of decreased transport. As pulse enters ITB region, propagating from ρ_{ECH} =0.7, amplitude of pulse δT_i decreases and trend reverses as leave ITB region

WORK HAS BEGUN ON COUPLING ION TRANSPORT TO ELECTRONS THROUGH A DEPENDENCE OF ION TRANSPORT COEFFICIENTS ON T_e AND ∇T_e

- Equation for ion energy conservation
 - $3/2 \partial n_i T_i / \partial t + \nabla q_i = S_i$ where heat flux $q_i = -n_i \chi_i \nabla T_i + n_i T_i U_i$
 - χ_i diffusion, U_i convection coefficients
- Two sources of coupling to electrons
 - source term, $S_i = Q_{NBI} Q_{ie}$ and collisional coupling $Q_{ie} = n^2(T_i T_e)/T_e^{3/2}$
 - ion transport coefficients may depend on T_e and/or ∇T_e , $\chi_i(\rho,T_i,\nabla T_i,T_e,\nabla T_e$) and $U_i(\rho,T_i,T_e)$
- Fourier transformed, linearized equation for \widetilde{T}_i with effective diffusion, convection and damping terms, D, V, $1/\tau$. Note there is a spatially distributed source.

$$-\mathbf{D}\widetilde{\mathsf{T}_{\mathsf{i}}}^{\prime\prime} + \mathbf{V}\widetilde{\mathsf{T}_{\mathsf{i}}}^{\prime} + (\frac{1}{\mathbf{\tau}} + i\frac{3}{2}\omega)\widetilde{\mathsf{T}_{\mathsf{i}}} = \mathsf{C}_{\mathsf{o}}\widetilde{\mathsf{T}}_{\mathsf{e}} + \mathsf{C}_{\mathsf{1}}\widetilde{\mathsf{T}}_{\mathsf{e}}^{\prime} + \mathsf{C}_{\mathsf{2}}\widetilde{\mathsf{T}}_{\mathsf{e}}^{\prime\prime}$$

COLLISIONAL TERM ALONE CAN NOT EXPLAIN ION RESPONSE

- Collisional term alone can not account for ion perturbed response since T

 e decreases toward plasma core whereas T

 i amplitude increases.
- Not able to compute effective transport coefficients yet, but can model them with simple polynomials.
- Much better fit to ion response obtained by including a source term $\propto \tilde{T}_e^{'}$.

SUMMARY

- Evidence for an ion ITB has been observed in QH-mode discharges in DIII-D based on measurements of T_i perturbations driven by T_e heat pulses created with modulated ECH power.
- The ion ITB appears to be spatially localized at ρ ~ 0.5 with a width of ~ 15 cm.
- The location of the barrier and its width were insensitive to changes in ∇T_i (factor 2.6 increase) and toroidal rotation velocity V_{φ} (60% increase) obtained by doubling P_{NBI} .
- Work has begun to solve the full second order partial differential equation for transport of ion perturbations with ion transport coefficients that are dependent on T_e and ∇T_e .
 - collisional coupling alone can not account for the ion perturbations observed
 - some coupling between ion transport coefficients and electrons is required

