

Large transport induced operational

limits in tokamak plasmas

P. N. GUZDAR

INSTITUTE FOR RESEARCH IN ELECTRONICS AND APPLIED PHYSICS (IREAP) UNIVERSITY OF MARYLAND

11TH EU-US TTF Workshop, Sofitel Vieux Port Marseille, France 4-7 September 2006

IN COLLABORATION WITH R.G. KLEVA , UMD, USA P. K. KAW AND R. SINGH, IPR GANDHINAGAR, INDIA B. LABOMBARD AND M. GREENWALD, MIT, USA

OUTLINE OF THE TALK

- MOTIVATION
- •THEORETICAL/NUMERICAL MODEL
- •COMPARISON WITH EXPERIMENTS
- CONCLUSIONS/FUTURE WORK

RECENT COMPARISON ON C-MOD WITH SIMULATIONS/THEORY

TABLE 1

LaBombard et al NF 45,1568,(2005)

	RDZ	Scott
	Definitions and Normalizations	
Time $\frac{\partial}{\partial t} \sim \frac{1}{t_0}$	Ideal Ballooning Time $t_0 = \left(\frac{RL_n}{2}\right)^{1/2} \frac{1}{C_s}$	Drift Scaling $t_0 = \frac{L_{Pe}}{C_s}$
Perpendicular $\nabla_{\perp} \sim \frac{1}{L}$	Linear Resistive Ballooning Scale $L = L_0 = 2\pi q \left(\frac{\rho_s \rho_e R}{\lambda_{ei}}\right)^{1/2} \left(\frac{2R}{L_n}\right)^{1/4}$	$L = \rho_s$
Parallel $\nabla_{//} \sim \frac{1}{L_{//}}$	$L_{//} = 2\pi q R$	$L_{\prime\prime} = qR$
Background Gradients	$\frac{\nabla_{\perp} n_0}{n_0} \sim \frac{1}{L_n} \ ; \ \frac{\nabla_{\perp} T_{e0}}{T_{e0}} \sim \frac{1}{L_{Te}} \ ; \ \frac{\nabla_{\perp} T_{i0}}{T_{i0}} \sim \frac{1}{L_{Ti}} \ ; \ \frac{\nabla_{\perp} p_{e0}}{p_{e0}} \sim \frac{1}{L_{Pe}}$	
	Key Control Parameters	
Poloidal Beta Gradient	MHD Ballooning Parameter $\alpha_{_{MHD}} = \frac{q^2 R}{L_{_{Pe}}}\beta$; $\beta = \frac{4\mu_0 p_{_{e0}}}{B^2}$	$\hat{\beta} = \frac{q^2 R}{L_{Pe}} \beta \left(\frac{R}{4 L_{Pe}} \right)$
Collisionality	Drift Frequency/Ballooning Time $\alpha_d = \frac{T_{e0}t_0}{eBL_nL_0}$ $\alpha_d = \left(\frac{\lambda_{ei}}{q^2R}\right)^{1/2} \left(\frac{2R}{L_n}\right)^{1/4} \frac{1}{8\pi} \left(\frac{M_i}{m_e}\right)^{1/4}$	Normalized Collision Frequency $C_{0} = \frac{m_{e}}{M_{i}} \left(\frac{qR}{L_{Pe}}\right)^{2} \frac{v_{el}L_{Pe}}{C_{s}}$ $C_{0} = \left(\frac{q^{2}R}{\lambda_{el}}\right) \left(\frac{R}{L_{Pe}}\right) \left(\frac{m_{e}}{M_{i}}\right)^{1/2}$
	Relationships Between Control Parameters	
	$\alpha_{MHD} = \hat{\beta} \frac{4L_{Pe}}{R} ; \alpha_d = \frac{C_0^{-1/2}}{4\pi} \left(\frac{R}{2L_n}\right)^{1/4} \left(\frac{R}{2L_{Pe}}\right)^{1/2}$	

Scott NJP, 4, 52.1-52.30, (2002) Braginskii Equations

Scott IAEA-11-S7, (2005)

BASIC IDEA FOR PRESENT MODEL-1

 \bullet BASIC INSTABILITIES IN THE EDGE REGION OF TOKAMAKS ARE FINITE β DRIFT WAVES AND DRIFT RESISTIVE BALLOONING MODES

• "MODULATIONAL" INSTABILITY GENERATES ZONAL FLOWS WHICH SATURATE FINITE β DRIFT WAVE/RESISTIVE BALLOONING TURBULENCE

INACCESSIBLE REGION DUE TO VERY LARGE EDGE TRANSPORT -GREENWALD PPCF 44, R27-R53 2002 WHAT PHYSICAL PROCESS LEADS TO VERY LARGE TRANSPORT ?

SCENARIO FOR LARGE EDGE TRANSPORT

STABILITY OF ZONAL (SHEAR) FLOWS

B. N. Rogers and W. Dorland PoP 12, 062511 2005

Marginal stability (for linear velocity and magnetic shear)

With ion diamagnetic effects

$$V'_{E} = \left[\frac{(\hat{s} - f\alpha_{MHD})^{2}}{\alpha_{MHD}} + \frac{\alpha_{D}^{2}}{4x_{L}^{2}}\right]^{1/2}$$

 $x_L \sim 1$, localization – width

LINEARIZED EQUATIONS FOR UNSTABLE MODES IN THE EDGE REGION OF TOKAMAKS

Rogers, Drake and Zeiler, PRL, **81**, 4396, 1998, Hastie Ramos and Porcelli PoP, **10**, 4405, 2001

$$\frac{d}{d\theta} \Big[f_1(\theta) \Psi \Big] + i \alpha_{MHD} \Big[\Omega f_1(\theta) \Phi + f_2(\theta) N \Big] = 0$$

$$\frac{d}{d\theta} \Big[\Phi - (\tau + 1) \hat{m} \alpha_D N \Big] - \frac{\hat{m}^2 f_1(\theta)}{4\pi^2} \Psi + i \big(\Omega - \hat{m} \alpha_D \big) \Psi = 0$$

$$\left[1-2\varepsilon_n f_2(\theta)\right]\Phi-\tau \hat{m}\alpha_D N-\Omega\left[N+\frac{\hat{m}\hat{\rho}_s^2}{\alpha_D}f_1(\theta)\Phi\right]=0$$

$$f_1(\theta) = 1 + \left[s\theta - \alpha_{MHD}Sin(\theta)\right]^2$$

$$f_2(\theta) = Cos(\theta) + [s\theta - \alpha_{MHD}Sin(\theta)]Sin(\theta)$$

NUMERICAL METHOD

Leads to determination of unstable eigenmodes from "all" branches, finite β dissipative drift waves and drift resistive ballooning modes

 α_{MHD}

s 0.4 0.5 0.6

"DENSITY LIMIT" CONDITION NOT GREENWALD LIMIT

From $\alpha_{MHD} = 3f(s)\alpha_{D} \qquad f(s) \sim 1$

$$\sqrt{n} \frac{a^2}{I_p} = 2 \frac{R^{7/12} L_n^{1/4} f(s)}{B^{1/3} Z_{eff}^{1/6}}$$

 $n(10^{20}/m^3)$, a(m), R(m), $I_p(MA)$, B(T)

CONCLUSIONS

- Investigated stability of zonal flows
- Criterion for inaccessible boundary stable dV/dx < Max(γ_{linear})
- Gives qualitative boundary consistent with observations and Rogers' et al. simulations
- Present model suggests weak magnetic shear in edge for quantitative comparison with C-MOD data

FUTURE WORK

- Improve estimate of stability condition for zonal flow
- Incorporate shaping effects in model for threshold for KH instability of zonal flows and finite beta drift wave/DRBM modes
- Explore the "interaction" region between the stability boundary for KH and LH to identify type of ELMS. ELMS are interplay between ballooning type modes and zonal and/or shear flow
- Extend study to full two dimensional eigenvalue stability of modes with shear to determine stability boundary more accurately
- Explore the connection of the "operational limit" boundary in ($\alpha_{\text{MHD}}, \alpha_{\text{D}}$) space to the Greenwald limit