

Cryogenic refrigeration for the LHC

Philippe Lebrun CERN, Geneva, Switzerland

MaTeFu Spring Training School Cadarache, 5-9 April 2009

The largest scientific instrument in the world...

...based on advanced technology

23 km of high-field superconducting magnets operating in superfluid helium at 1.9 K

Superconductors for high-field magnets

Cryogenic system layout

- 5 cryogenic islands
- 8 cryogenic plants, each serving adjacent sector, interconnected when possible
- Cryogenic distribution line feeding each sector

Configuration of cryogenics at LHC even point

Cryogenic plants

4.5 K refrigerators (18 kW @ 4.5 K)

1.8 K refrigeration units (2.4 kW @ 1.8 K)

Cryogenic storage and distribution

GHe storage

LIN storage

line Interconnection box

Distribution line

Analysis & management of heat loads

Analysis

Management

Heat inleaks

 Radiation 70 K shield, MLI

 Residual gas conduction $Vacuum < 10^{-4} Pa$

 Solid conduction Non-metallic supports Heat intercepts

Joule heating

 Superconductor splices Resistance < a few $n\Omega$

Beam-induced heating

Synchrotron radiation

 Beam image currents } 5-20 K beam screens

Acceleration of photoelectrons

Beam halo

absorbed in cold mass

Steady-state heat loads [W/m] (Cryomagnets and distribution line in LHC arcs)

Temperature	50-75 K	4.6-20 K	1.9 K LHe	4 K VLP
Heat inleaks*	7.7	0.23	0.21	0.11
Resistive heating	0.02	0.005	0.10	0
Beam-induced nominal**	0	1.58	0.09	0
Beam-induced ultimate**	0	4.36	0.11	0
Total nominal	7.7	1.82	0.40	0.11
Total ultimate	7.7	4.60	0.42	0.11

^{*} no contingency

** Breakdown	nominal	ultimate
Synchrotron radiation	0.33	0.50
Image current	0.36	0.82
Beam-gas Scattering	0.05	0.05
Photoelectron	0.89	3.07

Scaling laws for LHC dynamic loads

Doom narrowston	Energy	Bunch current	Bunch number	Bunch length	Luminosity
Beam parameter	Е	I_{bunch}	n_{bunch}	σ_{z} [r.m.s.]	L
Resistive heating	E^2	-	-	-	-
Synchrotron radiation	E^4	I_{bunch}	n_{bunch}	-	-
Image current	-	${ m I_{bunch}}^2$	n_{bunch}	$\sigma_z^{-3/2}$	-
Photo-electron cloud	-	${ m I_{bunch}}^3$	n_{bunch}	-	-
Beam gas scattering	-	I_{bunch}	n_{bunch}	-	-
Random particle loss		I_{bunch}	n_{bunch}		
Secondaries	E	-	-	-	L
RF losses	•	${ m I_{bunch}}^2$	n_{bunch}	-	-

Uncertainty & overcapacity factors

- Uncertainty factor F_{in}
 - Lack of reproducibility in construction (e.g. MLI wraps)
 - Variance of thermal processes at work (e.g. insulation vacuum)
 - Evolution in time (ageing, contamination of reflective surfaces)
 - ⇒ applied to static loads only, dynamic loads and their scaling known from first principles
- Overcapacity factor F_{oc}
 - Cooldown in finite time
 - Refrigerator loading < 100 %
 - Variability of machine performance
 - ⇒ applied to sum of static load with uncertainty and dynamic load
 - *⇒ no overcapacity applied to ultimate conditions*

Overall factor on installed refrigeration

Installed refrigeration power

$$Q_{installed} = Max [F_{oc}(F_{in}Q_{stat} + Q_{dyn nom}); (F_{in}Q_{stat} + Q_{dyn ult})]$$

- Values of uncertainty & overcapacity factors
 - $-F_{in} = 1.5$ at beginning of project
 - $F_{oc} = 1.5$
 - F_{in} gradually lowered following refinement of project configuration and improved knowledge of component thermal performance

Evolution of estimated heat loads & installed refrigeration capacity per LHC sector

Installed cooling duties in the LHC sectors

Temperature level	High-load sector	Low-load sector	
50-75 K	33000	31000	[W]
4.6-20 K	7700	7600	[W]
4.5 K	300	150	[W]
1.8 K	2400	2100	[W]
3-4 K	430	380	[W]
20-280 K	41	27	[g/s]

Evolution of installed power to heat load ratio

Procurement from industry

- European industry (Air Liquide & Linde Kryotechnik) had demonstrated their competency and know-how in manufacturing turnkey helium refrigerators of medium or large capacity
 - HERA (10 kW)
 - LEP2 (6 kW, 12 kW)
- Most efficient approach was therefore to procure via a functional and interface specification
 - Transform sector cooling requirements into refrigeration duties which can be reception-tested at cryoplant interface
 - Clearly define interfaces to cryogenic and other systems
 - Promote energy-efficient solutions
- Oligopolistic nature of market & desire to balance industrial returns among Member States led to split procurement under constraints
 - Align prices to satisfy CERN lowest-bidder purchasing rule
 - Impose convergence of non- or less-proprietary part of supply, i.e. compressor station and control system

Conversion of cooling duties from LHC sector to 4.5 K refrigerator

Specified refrigeration capacity for the LHC 4.5 K refrigerators

Temperature level	Unit	New refrigerator	Upgraded refrigerator
50-75 K	[W]	33000	31000
4.5-20 K	[W]	20700	19500
4.5 K	[W]	4400	4150
20-280 K	[g/s]	41	27

Scaling laws for cost of cryogenic He refrigerators (single cold box, no LIN precooling, controls excluded)

How to specify an efficient He refrigerator

- Include capital & operating costs over amortization period (10 years)
 in adjudication formula
- Operating costs dominated by *electricity*
- Include externalities in electricity costs => 60 CHF/MWh
 - distribution & transformation on CERN site
 - heat rejection in aero-refrigerants
- Establish shared incentive in the form of bonus/malus on measured vs. quoted electrical consumption
- Break "high efficiency = high investment" pseudo-rule: for given (specified) output, a more efficient plant is smaller, resulting in lower investment (direct & indirect) as well as cheaper operation

How to make an efficient refrigerator

(exemplified on Carnot cycle schematic)

Widen the low-temperature end of the cycle as shown in the T-S diagram

Compressor station of 4.5 K refrigerator

Identical installation for both suppliers

Compressor station of 4.5 K refrigerator (Power input ~ 4 MW)

Cold box of Air Liquide 4.5 K refrigerator

Cold box of Air Liquide 4.5 K refrigerator

Cold box of Linde 4.5 K refrigerator

Cold box of Linde 4.5 K refrigerator

Guaranteed vs measured performance of the new LHC 4.5 K refrigerators

LHC location	PA18	PA4	PA6	PA8
Supplier	Air Liquide	Air Liquide	Linde	Linde
Guaranteed energy consumption [kW]	4204	4204	4275	4275
Measured energy consumption [kW]	4297	4474	3964	4095
Measured cryogenic capacity [% of specified]	97.3	101.5	100.1	99.3
COP [W/W]	248	247	222	231

Liquid nitrogen precooling

- Each 3.3 km sector has a mass of 4625 t to be cooled in few weeks
- Corresponding power 600 kW, must be generated by vaporization of 1250 t LIN at rates of up to 5 t/h
- LIN precooling not foreseen for steady-state operation, but may also be used to boost helium liquefaction

First cooldown of LHC sectors

[◆] ARC56_MAGS_TTAVG.POSST ■ ARC78_MAGS_TTAVG.POSST ▲ ARC81_MAGS_TTAVG.POSST ◆ ARC23_MAGS_TTAVG.POSST

[•] ARC67_MAGS_TTAVG.POSST ■ ARC34_MAGS_TTAVG.POSST ▲ ARC12_MAGS_TTAVG.POSST • ARC45_MAGS_TTAVG.POSST

Challenges of power refrigeration < 2 K

- Compress large mass-flow rate of gaseous helium across high pressure ratio
 ⇒ maximum density at suction, i.e. cold
- Non-lubricated, contact-less machinery ⇒ *hydrodynamic compressor*, *multistage*
- Heat of compression rejected at low temperature ⇒ *high thermodynamic efficiency*

Main Features of LHC Cold Compressors

atmosphere 300 K under Active 3-phase induction magnetic electrical motor bearings (rotational speed 200 to 700 Hz) Fixed-vane diffuser Outlet Cold under Spiral volute vacuum Axial-centrifugal impeller (3D)

Inlet

Pressure ratio

2 to 3.5

Cold hydrodynamic compressors for the LHC

IHI-Linde

Specification of LHC 1.8 K refrigeration units

Steady state operation modes:

- Installed pumping capacity 125
 g/s at 15 mbar
 (i.e. ~2.4 kW @ 1.8 K)
- Turndown capability: 1 to 3 without extra liquid burning
- Cold return temperature to the 4.5 K refrigerator below 30 K (reduced capacity) to 20 K (installed capacity).
- Capacity check in standalone mode (Interface B closed)

1.8 K refrigeration cycles for the LHC

1.8 K Refrigeration Unit Cycles

Isentropic efficiency of cold compressors

$$\eta_{is} = \frac{H_{2'} - H_1}{H_2 - H_1}$$

C.O.P. of LHC 1.8 K refrigeration units

■4.5 K refrigerator part ■1.8 K refrigeration unit part

Controls for LHC cryogenics Challenges & solutions

	Tunnel	4.5 K refrigerators	1.8 K units	QUI	Common	TOTAL
Analog Inputs	12136	5216	2640	1128	216	21336
Analog Outputs	4856	1140	608	292	112	7008
Digital Inputs	4536	8100	3984	1144	592	18356
Digital Outputs	1568	956	1184	232	272	4212
Closed Loop Controllers	3680	548	328	100	48	4704

UNICOS framework providing

- 1. Programmable logic controllers (PLC) and associated hardware
- 2. Programming rules and code library for common objects
- 3. Automated tools for writing control code
- 4. Gateways based in industrial PC for WorldFIP-based signal conditioners
- 5. Communication via Ethernet gateways <-> PLC and PLC <-> PLC
- 6. Event-driven communication protocol between PLC <-> SCADA
- 7. SCADA based in PVSS with generic widgets, look-and-feel and shared data server

Control system architecture

Supervision layer

- Interface for operation team
- All operators action are taken from this level

Process control layer

- PLC : the control logic is performed at that level
- Programmers act on that Level

Field layer

Interface to process direct
 I/O Boards, Fieldbuses

Operator-friendly SCADA

Animated synoptics

PID controllers

Alarm & event lists

Trend charts

Some references

- Ph. Lebrun, *Cryogenics for the Large Hadron Collider*, <u>IEEE Trans. Appl. Superconductivity</u> **10** (March 2000) 1500-1506
- S. Claudet, P. Gayet & U. Wagner, Specification of four new large 4.5 K helium refrigeration systems for the LHC, Adv. Cryo. Eng. 45B (2000) 1269-1276
- S. Claudet, P. Gayet, B. Jager, F. Millet, P. Roussel, L. Tavian & U. Wagner, Specification of eight 2400 W @ 1.8 K refrigeration units for the LHC, Proc. ICEC18 Mumbai, Narosa (2000) 207-210
- Ph. Lebrun, *Large cryogenic refrigeration system for the LHC*, <u>Proc. ICCR'2003</u> Hangzhou, IIR (2003)
- H. Gruehagen & U. Wagner, Measured performance of four new 18 kW @ 4.5 K helium refrigerators for the LHC, Proc. ICEC20 Beijing, Elsevier (2005) 991-994
- L. Serio et al., Validation and performance of the LHC cryogenic system through commissioning of the first sector, Adv. Cryo. Eng. 53B (2008) 1411-1418
- S. Claudet, Ph. Lebrun, L. Serio, L.Tavian, R. van Weelderen & U. Wagner, Cryogenic heat load and refrigeration capacity management at the Large Hadron Collider, presented at ICEC22 Seoul (2008)