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The The largestlargest scientificscientific instrument in the worldinstrument in the world……



……basedbased on on advancedadvanced technologytechnology

23 km of 23 km of highhigh--fieldfield superconductingsuperconducting magnetsmagnets

operating in operating in superfluidsuperfluid heliumhelium atat 1.9 K1.9 K



SuperconductorsSuperconductors for for highhigh--fieldfield magnetsmagnets
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Cryogenic system layoutCryogenic system layout

• 5 cryogenic islands

• 8 cryogenic plants, each serving adjacent sector, interconnected when possible

• Cryogenic distribution line feeding each sector 



Configuration of Configuration of cryogenicscryogenics atat LHC LHC eveneven pointpoint
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Cryogenic plants Cryogenic plants 

1.8 K refrigeration units
(2.4 kW @ 1.8 K)

4.5 K refrigerators
(18 kW @ 4.5 K)



Cryogenic storage and distributionCryogenic storage and distribution

GHe storage                     LIN storage  

Cryo-magnet string                          Distribution line        Interconnection box
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Analysis & management of heat loadsAnalysis & management of heat loads

• Heat inleaks

– Radiation 70 K shield, MLI

– Residual gas conduction Vacuum < 10-4 Pa

– Solid conduction Non-metallic supports                       
Heat intercepts

• Joule heating

– Superconductor splices Resistance < a few nΩ
• Beam-induced heating

– Synchrotron radiation }

– Beam image currents } 5-20 K beam screens

– Acceleration of photoelectrons }

– Beam halo                                  absorbed in cold mass

Analysis Management





SteadySteady--state heat loads [W/m]state heat loads [W/m]
((CryomagnetsCryomagnets and distribution line in LHC arcs)and distribution line in LHC arcs)

* no contingency

0.110.424.607.7Total ultimate

0.110.401.827.7Total nominal

00.114.360Beam-induced ultimate**

00.091.580Beam-induced nominal**

00.100.0050.02Resistive heating

0.110.210.237.7Heat inleaks*

4 K VLP1.9 K LHe4.6-20 K50-75 KTemperature

3.070.89Photoelectron

0.050.05Beam-gas Scattering

0.820.36Image current

0.500.33Synchrotron radiation

ultimatenominal** Breakdown



ScalingScaling lawslaws for LHC for LHC dynamicdynamic loadsloads



UncertaintyUncertainty & & overcapacityovercapacity factorsfactors

• Uncertainty factor Fin
– Lack of reproducibility in construction (e.g. MLI wraps)

– Variance of thermal processes at work (e.g. insulation vacuum)

– Evolution in time (ageing, contamination of reflective surfaces)

⇒ applied to static loads only, dynamic loads and their scaling known

from first principles

• Overcapacity factor Foc
– Cooldown in finite time

– Refrigerator loading < 100 %

– Variability of machine performance

⇒ applied to sum of static load with uncertainty and dynamic load

⇒ no overcapacity applied to ultimate conditions



OverallOverall factor on factor on installedinstalled refrigerationrefrigeration

• Installed refrigeration power

Qinstalled = Max [Foc (Fin Qstat + Qdyn nom); (Fin Qstat + Qdyn ult)]

• Values of uncertainty & overcapacity factors

– Fin = 1,5 at beginning of project

– Foc= 1,5

– Fin gradually lowered following refinement of project configuration 
and improved knowledge of component thermal performance 



Evolution of estimated heat loads & installed Evolution of estimated heat loads & installed 

refrigeration capacity per LHC sectorrefrigeration capacity per LHC sector
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Installed cooling duties in the LHC sectorsInstalled cooling duties in the LHC sectors

[g/s]274120-280 K

[W]3804303-4 K

[W]210024001.8 K

[W]1503004.5 K

[W]760077004.6-20 K

[W]310003300050-75 K

Low-load sectorHigh-load sector
Temperature

level



Evolution of installed power to heat load ratioEvolution of installed power to heat load ratio
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Procurement from industryProcurement from industry

• European industry (Air Liquide & Linde Kryotechnik) had demonstrated 
their competency and know-how in manufacturing turnkey helium 
refrigerators of medium or large capacity

– HERA (10 kW)

– LEP2 (6 kW, 12 kW)

• Most efficient approach was therefore to procure via a functional and 
interface specification

– Transform sector cooling requirements into refrigeration duties which can 
be reception-tested at cryoplant interface

– Clearly define interfaces to cryogenic and other systems

– Promote energy-efficient solutions

• Oligopolistic nature of market & desire to balance industrial returns 
among Member States led to split procurement under constraints

– Align prices to satisfy CERN lowest-bidder purchasing rule

– Impose convergence of non- or less-proprietary part of supply, i.e. 
compressor station and control system 



Conversion of Conversion of coolingcooling dutiesduties

fromfrom LHC LHC sectorsector to 4.5 K to 4.5 K refrigeratorrefrigerator



Specified refrigeration capacitySpecified refrigeration capacity

for the LHC 4.5 K refrigeratorsfor the LHC 4.5 K refrigerators

41

4400

20700

33000

New
refrigerator

27

4150

19500

31000

Upgraded
refrigerator

[g/s]20-280 K

[W]4.5 K

[W]4.5-20 K

[W]50-75 K

UnitTemperature level



ScalingScaling lawslaws for for costcost of of cryogeniccryogenic He He refrigeratorsrefrigerators

(single cold box, no LIN (single cold box, no LIN precoolingprecooling, , controlscontrols excludedexcluded))



How to specify an efficient He refrigeratorHow to specify an efficient He refrigerator

• Include capital & operating costs over amortization period (10 years)
in adjudication formula

• Operating costs dominated by electricity

• Include externalities in electricity costs => 60 CHF/MWh
– distribution & transformation on CERN site

– heat rejection in aero-refrigerants

• Establish shared incentive in the form of bonus/malus on measured 
vs. quoted electrical consumption

• Break “high efficiency = high investment” pseudo-rule: for given 
(specified) output, a more efficient plant is smaller, resulting in lower 
investment (direct & indirect) as well as cheaper operation



How to How to makemake an efficient an efficient refrigeratorrefrigerator
(exemplified on (exemplified on Carnot cycle Carnot cycle schematicschematic))
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T5
4.5 K - 20 K loads

(magnets + leads + cavities)
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Compressor station of 4.5 K refrigeratorCompressor station of 4.5 K refrigerator

ORS
HP supply

MP return

LP return

LP compressors

HP compressors

Oil removal system

Gas coolers

800 g/s @ 1.05 bar

880 g/s @ 3.9 bar

1680 g/s @ 20 bar

Electrical power consumption: 4 MW

Identical installation for both suppliers



Compressor station of 4.5 K refrigeratorCompressor station of 4.5 K refrigerator

(Power input ~ 4 MW)(Power input ~ 4 MW)



Cold box of Air Cold box of Air LiquideLiquide 4.5 K refrigerator4.5 K refrigerator

HP

MP

LP

300 K 75 K 50 K 20 K

4.5 K supply

20 K return

75 K return

50 K supply

4.5 K



Cold box of Air Cold box of Air LiquideLiquide 4.5 K refrigerator4.5 K refrigerator



Cold box of Cold box of LindeLinde 4.5 K refrigerator4.5 K refrigerator

4.5 K supply

20 K return

50 K supply

75 K return

HP

MP

LP

300 K 90 K 75 K 50 K 20 K 4.5 K



Cold box of Cold box of LindeLinde 4.5 K refrigerator4.5 K refrigerator



Guaranteed Guaranteed vsvs measured performancemeasured performance

of the new LHC 4.5 K refrigerators of the new LHC 4.5 K refrigerators 

231222247248COP [W/W]

99.3100.1101.597.3
Measured cryogenic capacity
[% of specified]

4095396444744297Measured energy consumption [kW]

4275427542044204Guaranteed energy consumption [kW]

LindeLindeAir LiquideAir LiquideSupplier

PA8PA6PA4PA18LHC location



C.O.P. of large C.O.P. of large cryogeniccryogenic heliumhelium refrigeratorsrefrigerators
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Liquid nitrogen Liquid nitrogen precoolingprecooling

• Each 3.3 km sector has a mass of 4625 t to be cooled in few weeks

• Corresponding power 600 kW, must be generated by vaporization of 
1250 t LIN at rates of up to 5 t/h

• LIN precooling not foreseen for steady-state operation, but may also
be used to boost helium liquefaction



First First cooldowncooldown of LHC of LHC sectorssectors



Challenges of power Challenges of power refrigerationrefrigeration < 2 K< 2 K
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• Non-lubricated, contact-less machinery ⇒ hydrodynamic compressor, multistage

• Heat of compression rejected at low temperature ⇒ high thermodynamic efficiency



Main Features of LHC Cold CompressorsMain Features of LHC Cold Compressors
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Cold Cold hydrodynamichydrodynamic compressorscompressors for the LHCfor the LHC

IHI-Linde Air Liquide



Specification of LHC 1.8 K refrigeration unitsSpecification of LHC 1.8 K refrigeration units

Steady state operation modes:
– Installed pumping capacity 125 
g/s at 15 mbar
(i.e. ~2.4 kW @ 1.8 K)

– Turndown capability: 1 to 3 
without extra liquid burning

– Cold return temperature to the 
4.5 K refrigerator below 30 K 
(reduced capacity) to 20 K 
(installed capacity).

– Capacity check in standalone 
mode (Interface B closed)
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1.8 K 1.8 K refrigerationrefrigeration cycles for the LHCcycles for the LHC

1.8 K Refrigeration Unit Cycles
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Isentropic efficiency of cold compressorsIsentropic efficiency of cold compressors
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C.O.P. of LHC 1.8 K refrigeration unitsC.O.P. of LHC 1.8 K refrigeration units
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Controls for LHC cryogenicsControls for LHC cryogenics
Challenges & solutionsChallenges & solutions

UNICOS framework providing
1. Programmable logic controllers (PLC) and associated hardware
2. Programming rules and code library for common objects
3. Automated tools for writing control code
4. Gateways based in industrial PC for WorldFIP-based signal conditioners
5. Communication via Ethernet gateways <-> PLC and PLC <-> PLC
6. Event-driven communication protocol between PLC <-> SCADA
7. SCADA based in PVSS with generic widgets, look-and-feel and shared data 

server

4704481003285483680
Closed Loop 
Controllers

421227223211849561568Digital Outputs

183565921144398481004536Digital Inputs

700811229260811404856Analog Outputs

2133621611282640521612136Analog Inputs

TOTALCommonQUI1.8 K units
4.5 K 

refrigeratorsTunnel



Control system architectureControl system architecture

• Field layer
- Interface to process direct 

I/O Boards, Fieldbuses

• Process control layer
- PLC : the control logic is 

performed at that level
- Programmers act on that 

Level

• Supervision layer
- Interface for operation team 
- All operators action are 

taken from this level



OperatorOperator--friendlyfriendly SCADASCADA

Animated
synoptics

Alarm & 
event lists

PID 
controllers

Trend charts
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