Agenda

1. Overview
2. Wendelstein 7-X: How and why BNG?
3. Manufacturing of W7-X coils
 3.1 Introduction
 3.2 Superconductor
 3.3 Winding Pack
 3.4 Coil Casings
 3.5 Assembly
 3.6 Quality Assurance and Test Program
4. Problems and specials during W7-X coils manufacturing
 4.1 3-Dimensional Castings
 4.2 Insulation Defects
 4.3 Manufacturing failures
 4.4 Lessons Learned
5. Review about a 10-years-project
6. Summary
1. Overview

The W7-X machine

- Außengefäss: Outer vessel
- Stutzen: Nozzles
- nichtplanare Spulen: Nonplanar coils
- planare Spulen: Planar coils
- Plasmagefäss: Plasma vessel
- Zentralring: Central support
- Divertor
- Plasma
- Maschinenfundament: Machine basement
1. Overview

Coil types

- 50 non-planar coils form the magnetic confinement for the plasma
- 5 types of coils, 10 coils of each type
- Dimensions of a coil: 3,2 m x 2,2 m x 1,2 m
- Weight of a coil: appr. 5 t
Who is BNG?

- Babcock Noell GmbH (BNG) is a medium-size company, with 300 Employees and a Turnover of 54 mio EUR *
- BNG is located in Würzburg
- BNG is the centre of competence with world-wide responsibility for nuclear- magnet- and environmental technology of the Bilfinger Berger Power Service Group.

* acc. IFRS
Product Areas

<table>
<thead>
<tr>
<th>Nuclear Service</th>
<th>Nuclear Technology</th>
<th>Magnet Technology</th>
<th>Environment Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containment lock - preparation of seal for leakage test</td>
<td>Positioning of a Liner-assembly for EPR Reactor OL 3 Finland</td>
<td>Superconducting dipole for the LHC accelerator, CERN, Geneva</td>
<td>Components for flue gas cleaning systems</td>
</tr>
</tbody>
</table>

2. W7-X: How and why BNG
BNG has built together with ASG the W7-X DEMO coil

The “Consortium Wendelstein “ for the Series Production:

- **ASG:**
 Fabrication of Winding Packs Type 2, 3, and 4; Developments; Design

- **BNG:**
 Fabrication of Winding Packs Typ1 and 5; Assembly of Coils; Consortial Project Management; Developments; Design

Test of the DEMO-coil in TOSCA
3. Manufacturing of W7-X coils
3.1 Introduction

W7-X manufacture - only with European network of subcontractors for main tasks

- Consortium Bruker (former EAS, VAC)/LUVATA (former OCSI, EM) Superconductor Fabrication
- ABB Service:
 Winding Packs of Type 1 and 5
- Österby Gjuteri:
 Casting and Machining of Case Half Rings
- C-CON:
 Final Machining and 3D Measurement

- A lot of smaller tasks are also carried out by subcontractors across Europe
3. Manufacturing of W7-X coils
3.1 Introduction

- International industrial consortium for fabrication
- Many companies from all over Europe involved
- Network established by industry
3. Manufacturing of W7-X coils
3.2 Superconductor

- Before production started, an extensive development program was performed, which even had some overlap into the production phase
- During all the production period, the fabrication process was improved permanently in order to improve the quality of the conductor

Technical Data:
- Critical current of the coil after winding: max. 32 kA at 4.2 K and 6 T, operating current of the coil 17.6 kA
- CICC with jacket made of Al alloy 6063, fabricated by co-extrusion process
- Outer Dimensions (16 mm x 16 mm) ± 0.05 mm
- Void Fraction (37 ± 2) %
- Jacket is hardened after winding process
3. Manufacturing of W7-X coils
3.2 Superconductor

Superconductor Fabrication - Cabling:

- NbTi Superconducting Material
- Stabilisation Ratio NbTi / Cu: 2.6
- 243 strands are cabled in 5 stages to form the superconducting rope.
- Cabling law: $3 \times 3 \times 3 \times 3 \times 3$
3. Manufacturing of W7-X coils
3.2 Superconductor

Superconductor Fabrication – Co-Extrusion

- Feeding of rope into press
- Quenching of hot conduit with water
- Al billet temperature check
- Conductor is stored on hasps
3. Manufacturing of W7-X coils

3.3 Winding Pack

- 30 WPs were produced by ASG, all in their fabrication halls in Genoa.
- 20 WPs were produced by BNG. BNG has placed a contract to ABB as sub supplier.
- Main challenge: All 10 coils of each type must have the same geometry within tight tolerances defined at definition cross sections.

Solution approach:
- Use of massive winding forms. The same winding form is used for the fabrication of all winding packs of the same type.
- Application of a sophisticated clamping system during winding and impregnation.
3. Manufacturing of W7-X coils
3.3 Winding Pack

Winding Pack fabrication – Winding Form

- Design
- Casting
- Machining
3. Manufacturing of W7-X coils
3.3 Winding Pack

Fabrication of Winding Packs – Winding

• During winding, the conductor is formed by hand into the coil shape
• The conductor is held in position by clamps
The electrical connection is realised by a copper block, into which the cable is soldered and pressed. The resistance of each joint is $<1 \, \text{n}\Omega$ at 4 K.

The double layers of the coil are connected by 5 interlayer joints serving both as electrical and hydraulical connections.
3. Manufacturing of W7-X coils
3.3 Winding Pack

Fabrication of Winding Packs – Insulation

Ground insulation is realised by glass tape, half overlapped

In the winding head region the conductors are protected by G11 plates, which are placed exactly
3. Manufacturing of W7-X coils
3.3 Winding Pack

Fabrication of Winding Packs – Impregnation

Impregnated winding pack

Assembly of winding pack into impregnation form

Impregnation vessel after impregnation cycle

Assembly of impregnation form into impregnation vessel
3. Manufacturing of W7-X coils
3.3 Winding Pack

Fabrication of Winding Packs – Geometrical Measurement

Achieved Tolerances:
Example: Coil Type 1 – TP 3; Specification ± 3 mm
3. Manufacturing of W7-X coils
3.4 Coil Casings

Compared to the prototype coil:

- More complex geometry
- Higher varying wall thicknesses
- Tighter geometrical tolerances
- Need of less expensive fabrication method due to number of coils (for the prototype case made of segments)
3. Manufacturing of W7-X coils
3.4 Coil Casings

Fabrication of Casings - Steps

1. Pouring with special material composition
2. Fettling
3. Heat treatment with 1100°C

4. Machining
3. Manufacturing of W7-X coils
3.4 Coil Casings

Fabrication of Casings: 5. Dimensional Check

<table>
<thead>
<tr>
<th>Deviation</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>> +5mm</td>
<td>5.5%</td>
</tr>
<tr>
<td>+3mm ...</td>
<td>+5mm: 4.3%</td>
</tr>
<tr>
<td>+2mm ...</td>
<td>+3mm: 10.8%</td>
</tr>
<tr>
<td>+1mm ...</td>
<td>+2mm: 25.9%</td>
</tr>
<tr>
<td>0mm ...</td>
<td>+1mm: 27.3%</td>
</tr>
<tr>
<td>-1mm ...</td>
<td>0mm: 13.5%</td>
</tr>
<tr>
<td>-2mm ...</td>
<td>-1mm: 8.2%</td>
</tr>
<tr>
<td>< -2mm</td>
<td>4.5%</td>
</tr>
</tbody>
</table>
3. Manufacturing of W7-X coils
3.4 Coil Casings

Fabrication of Casings - Steps

6. Fitting and acceptance

7. Delivery to BNG / Zeitz
3. Manufacturing of W7-X coils
3.5 Assembly

View into the workshop in Zeitz
3. Manufacturing of W7-X coils

3.5 Assembly

- The winding pack is inserted into the case
- The half rings of the case are welded together (so-called closure weld)
- The winding pack is embedded
- Additional support elements are welded on the case
- Final machining takes place including threads and drillings
- The coils shape is controlled by a 3D measurement
- The case cooling system is mounted
- Works acceptance test
3. Manufacturing of W7-X coils

3.5 Assembly

Coil assembly – Welding of half rings

Welding and NDT of the root

Welding of the coil cases on a special welding table
3. Manufacturing of W7-X coils
3.5 Assembly

Coil assembly - Embedding

Embedding of the coils

Qualification of procedure with mock up
3. Manufacturing of W7-X coils

3.5 Assembly

Coil assembly – Final machining and measurement

Final machining

Check of threads with templates

Automatic 3 D measurement of coil after final machining
3. Manufacturing of W7-X coils

3.5 Assembly

Coil assembly – Manufacturing of cooling system

- Fitting of the cooling tubes
- Welding of Cu stipres
- Soldering of Cu stripes to the SS cooling tube
3. Manufacturing of W7-X coils
3.5 Assembly

W7-X Manufacture - Challenges

- Development of a sophisticated case cooling system during production
- Repair of winding shortages and insulation defects (Paschen!)
- Modification of already assembled supports at finished and partly finished coils → partial disassembly of coils, re-machining of coils
- Reduction of geometrical tolerances at finished and partly finished coils → partial disassembly of coils, re-machining of coils
• Production is accompanied by documents showing all production and test steps in detail and sequential order (so called Quality Inspection and Production Plan QIPP)
• Important steps of testing or production are agreed as notification or hold points between the fabrication and the customer
• The contents of those documents are agreed mutually and are mandatory also for sub suppliers
• Several tests accompanied the complete production, also internal tests

QIPP is always present on the coil

Videoscopic investigation of components, tubes or welds here: T-piece
Geometrical Tests

3 D measurements with the FARO arm are carried out during several steps of fabrication:

- Measurement of the Winding pack after delivery
- Measurement of the reference pins before and after embedding
- Measurement of the surface in order to define the areas of final machining
- Measurement after machining
- Measurement of wall thickness in special regions with US
Hydraulic Tests

Pressure and leak tests are performed:
- On the winding packs after impregnation
- On the cooling tubes before assembly of the Cu stripes
- On the finished coil

Mass flow measurements are performed
- On the conductors
- On the winding pack
- On the finished coil
- At Saclay at cryotemperature
Electrical Tests

DC and AC high voltage tests are carried out:

- DC test in air with 13 kV, in Vacuum with 9,1 kV (Paschentest)
- AC test with 4 kV$_{pp}$ in air
- All tests performed on the impregnated winding packs before and after delivery to Zeitz
- If necessary, at several steps during the assembly or during or after repair
- Before delivery to Saclay
- At Saclay at room and cryo temperature (10 kV; 3.2 kV$_{pp}$ respectively)
Summary of Acceptance Tests in Saclay

- All coils passed full current and quench tests successfully. T_{cs} was higher than specified, which gives some operational margin.

- All coils passed the hydraulic and leak tests successfully. At room temperature the leak rate was below $1 \cdot 10^{-8}$ mbar l/s

- The mechanical behaviour of the coils showed up as expected.

- Coil resistance (due to interlayer joints) was below 5 nΩ

- High voltage tests on several coils revealed problems with the first generation QD-cable in vacuum conditions (Paschen!) and with insulation failures.
Design of the casings in the Specification

New case design required a change of the fabrication method -> cast half rings with problems:
- Different wall thicknesses -> region for shrinkage
- Too thick material -> no x-ray possible -> LINAC investigation

Design of the casings now – red: additional material
4. Problems and Specials
4.2 Insulation Defects

1. High voltage test of the coil in vacuum („Paschetest“

2. Discharges in the region of the insulation defect visible with video system

3. Repair of the insulation in the affected region
4. Problems and Specials
4.3 Manufacturing Failures

1. Failure detected by "Paschentest"
2. Repair concept
3. Machining of opening
4. Access to affected region
5. Repair of Winding Pack
6. Repair finished
4. Problems and Specials
4.4 Lessons learned

Technical Lessons:

• Casting of such 3D shaped components is a very complicated task. It needs strong effort and close monitoring of all tests in order to find as many improvements as possible, which can be realised economically.

• The machining and accuracy requirements are at the limits of what is technically feasible at present.

• One can repair winding packs and even coils, if short circuits are detected at later fabrication steps only.

• Realisation of design changes during running fabrication is possible, but causes a lot of additional effort, time shift and cost increase.
General Lessons:

- Fix essential requirements early!
 (interfaces, design, specification and acceptance criteria)
 Otherwise there is the danger of disturbance or interruption of production

- Establish a suitable and reasonable quality assurance

- Performing the right tests at the right time

- Experience and continuity are key-factors for the project teams

- Standard procurement procedures can hardly be applied. A qualifications
 process and adjusted contractual regulation (e.g. on liabilities) are
 necessary.
4. Problems and Specials

4.4 Lessons learned

General Lessons:

The benefit is, that all participants of this project have gained technical expertise, for instance:

- Better understanding of critical manufacturing steps
- Extending of assembly and repair procedures
- Successful processing of large projects under the pressure of modifications
- All participants had to act coordinated to achieve a common goal

Due to the experience we have gained during this project we are well prepared for future challenges!
5. Review about a 10-Years-Project

- 110 progress reports issued
- 1550 letters to IPP written
- app. 800 NCRs issued
- app. 350 QIPPs handled
- app. 300 folders of documentations to be prepared
• 90 km copper stripes applied
• 6.4 Mio weld points set
• 23,000 m cooling tubes bent and used
• 200 t cast material used
• app. 4000 m QD cable used
• Records: AAB25: 3x delivered to CEA
 AAB15: 4 x machined in PEM/KUKA
 AAB44: 16 months stored
 AAB11: 1. coil in Saclay (June 2003)
 AAB18: 1. coil in Greifswald
 (Dec. 2004)
5. Review about a 10-Years-Project

- app. 850 business trips done
- app. 450,000 km went by car
- app. 160,000 flight kilometres
- „flight pioneers“ @ Ryanair in April 2003
- app. 150,000 coils transport kilometres
Experience for fusion coil manufacturing is available in industry, e.g. from ITER TFMC, W7-X coils.

Impression on the successful manufacturing of 50 non-planar series coils for W7-X was given with emphasis on technical challenges and lessons that can be learned.

Due to the experience we have gained during this project we are well prepared for future challenges!