Stability of neutral silicon interstitials in 3C- and 4H-SiC: A first-principles study

T. Liaoa, G. Romab, J. Wanga and Y. Zhouc

aHigh-performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

bService de Recherches de Métallurgie Physique, CEA Saclay, 91191 Gif sur Yvette, France

cShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China

tliao@imr.ac.cn

The structural stability and properties of single silicon interstitials in their neutral state are investigated via \textit{ab initio} methods in 3C- and 4H-SiC. We find a strong dependence of defect formation energies on the choice of k-point sampling and confirm that Γ point alone is far from sufficient to achieve the convergence if the supercell is not large enough. By using a larger k grid ($2\times2\times2$ shifted-mesh) in 65-atom 3C-SiC, the neutral silicon interstitial find its global minimum energy configuration as split interstitial along $<110>$ direction on silicon lattice site, instead of the tetrahedrally carbon-coordinated interstitial configuration as reported by some previous works. For 4H-SiC, the most energetically favorable silicon interstitial is also found to be the split interstitial configuration $I_{\text{Sisp}}<110>$ but in the hexagonal layer. This result can be reasoned from the fact that an open structure of SiC along the $<110>$ direction allows for a relatively small relaxation around this interstitial and a larger energy gain compared to other cases. The defect formation energies in 4H-SiC are in general larger than those in 3C-SiC, implying that the insertion of silicon interstitial introduces a large lattice distortion to the local coordination environments and affect even the second- or thirdnearest neighbors. We present also some preliminary results on di-interstitials clusters. In the top of their hierarchy, two compact clusters are found, one is composed of a dumbbell along $<110>$ direction with a center silicon atom located nearby which resembles to a well-known structure in silicon, and the other consists of two split interstitials arranged in orthogonal directions, $I_{\text{Sisp}<001>}$ and $I_{\text{Sisp}<110>}$.

Number of words in abstract: 260

Keywords:
Technical area: 11. Multiscale modeling for fusion materials and structure
Special session: Not specified
Presentation: No preference
Special equipment: No special equipment