Investigation of the mechanical properties and microstructure of W and WLa$_2$O$_3$ after high-speed hot extrusion

L. Velevaa, Z. Oksiutab, N. Baluca, W. Pachlac and K. Kurzydlowskid

aEPFL-Ecole Polytechnique Fédérale de Lausanne, Association Euratom-Confédération Suisse, UHD - CRPP, PPB 210 - Ecublens, CH-1015 LAUSANNE, Switzerland

bCRPP-EPFL, Association EURATOM-Confédération Suisse, ODGA-C103, 5232 Villigen-PSI, Switzerland

cInstitute of High Pressure Physics of the Polish Academy of Science, Poland

dTechnical University of Warsaw, Warsaw, Poland

lyubomira.veleva@psi.ch

Tungsten and tungsten-base materials are considered as promising materials for facing plasma components in fusion reactors, due their good thermomechanical properties, high melting temperature and low hydrogen solubility. Unfortunately these materials are brittle at low and intermediate temperatures. The aim of this work is to improve the ductility of W and W-base materials by high-speed hot extrusion. Two different materials W and W-La$_2$O$_3$, were hot extruded in a vertical press at 1000°C, under a pressure of 1.7GPa and using a high extrusion speed of 10^4 s$^{-1}$. Following high speed hot extrusion, the W rod was observed to contain a lot of cracks, while a W-La$_2$O$_3$ rod with a diameter of 10 mm was successfully produced without any cracks. W-La$_2$O$_3$ appears clearly more ductile than W under high-speed hot extrusion. Microhardness measurements showed that the hardness of W increases slightly from 4550 to 4580 MPa, as a result from highspeed hot extrusion, while the hardness of W-La$_2$O$_3$ decreases from 5100 to 4670 MPa. In order to correlate mechanical properties to the microstructure extruded rods are being investigated by means of Charpy impact and tensile tests and scanning and transmission electron microscopy observations.

Number of words in abstract: 190

Keywords:
Technical area: 32. Developing fusion materials Refractory alloys (vanadium, tungsten, etc.)
Special session: Not specified
Presentation: No preference
Special equipement: No special equipment