ICFRM2007/168
Ceramic Routes to SiC/SiC Composites for Fusion Applications

S. Novaka, G. Drazica, T. Topliseka, A. Ortonab and D. Gaiac

aDept. of Nanostructured Materials, Jozef Stefan Institute, Ljubljana, Slovenia
bSUPSI-ICIMSI-DTI, Manno, Switzerland
cFN Spa, Bosco Marengo, Italy
sasa.novak@ijs.si

The production of SiC/SiC composites with the properties required for fusion application is a complex, multi-stage process. The CVI and PIP techniques result in very low-activation materials but with unacceptable residual porosity. On the other hand, the NITE method produces a dense material with good mechanical properties, but the used sintering additive used can make a considerable undesirable contribution to the activity of the material.

This paper will present an alternative approach to the production of SiC/SiC composite using a ceramic processing route. In the investigation, special attention was given to the selection of low-activation sintering additives that enable densification of the matrix material at moderate temperatures, i.e., below 1500°C. The compositions were tailored with respect to the calculated activation in a fast-neutron flux and taking into account the thermal stability of the available SiC fibres. The technique comprises infiltration of SiC-fiber perform with a colloidal suspension of micron- and nano-sized powders mixture and in the second stage infiltration with sintering aids based on MgO(Al\textsubscript{2}O\textsubscript{3})-SiO\textsubscript{2}-P\textsubscript{2}O\textsubscript{5} system.

With the aim to minimize the amount of secondary phase in the matrix material, the powders were coated with a thin layer of MgO or Al\textsubscript{2}O\textsubscript{3}. A combinatorial approach where the SiC-infiltrated perform is further densified with CVI will also be presented.

Number of words in abstract: 208
Keywords:
Technical area: 33. Developing fusion materials SiC/SiC and ceramic composites
Special session: Not specified
Presentation: No preference
Special equipment: No special equipment