In-pile Testing of the ITER First Wall Mock-Ups at Relevant Thermal Loading Conditions

N. Litunovskya, A. Gervashb, P. Lorenzettoc, I. Mazulb and R. Melderd

aDoroga na Mettalostroy Laboratory, D.V. Efremov Scientific Research Institute, Promzona Metallostroy, 196641 St Petersburg, Russian Federation

bDevelopment of Plasma Facing Materials and Components Laboratory, EFREMOV INSTITUTE, 196641 ST PETERSBOURG, Russian Federation

c2EFDA, Garching, Germany

dResearch Institute of Atomic Reactors, Dimitrovgrad, Russian Federation

nlitunovsky@sintez.niefa.spb.su

The paper describes experimental technique and some preliminary results of thermal fatigue testing of the water-cooled ITER PFW mock-ups inside channel of the experimental fission reactor RBT-6 (RIAR, Dimitrovgrad, Russia). This experiment has provided simultaneous effect of neutron fluence and thermal gradient based damages on tested mock-ups to have higher correspondence to real PFC operation conditions in comparison with prevailing tests where neutron and thermal fatigue factors are simulated in series.

The experimental in-pile assembly contained two water-cooled first wall mock-ups with dimensions of 114(L)x56x56 mm3, armored with two beryllium tiles (h=10 mm) each. One of these mock-ups was manufactured by EFDA team with application of the HIP technology and the second one was made in Efremov Institute by method of CuCrZr/SS casting with posterior fast brazing of the armoring tiles. The high-temperature flat ohmic graphite heater, operated by PC-controlled power supply system was used for cyclic thermal loading of the armored mock-ups surfaces. Transfer of heat from heater to the mock-ups was provided by radiant heat exchange (approx. 70\%) and by thermal conductivity of the protective helium atmosphere through a gap of 2.5 mm (approx. 30\%).

The presented experiment has been continued for 200 days of effective irradiation with final damage level in the mock-ups (CuCrZr) of 0.75 dpa. About 3700 thermal cycles with nominal heat flux onto mock-ups of 0.4-0.5 MW/m2 were done before the heater failure and then the irradiation was continued in a non-cycling mode.