Full screen / Default size Home

Lawson’s criterion: the demonstration...

The thermal energy of a D-T plasma is:

   (k = Boltzmann’s constant)

Supposing in addition:
that our plasma is a mixture containing 50% Deuterium and 50% Tritium
and by obtaining from the plasma’s near neutrality :
       
nD = nT 
        n
ions = nD + nT = n 
        thus  n
D = nT = n/2
a uniform temperature T (Télectrons=Tions=T)

We have : W = 3 nkT V (eq1)

 

The fusion power is equal to the number of fusion reactions multiplied by
The energy given off by a fusion reaction : Pfusion  = Nfusion  x Efusion
thus :
 
 
sn(T) = reaction rate ~ Cst T²  in the range 10-20 keV (eq2)

hence : Nfusion = n² / 4  sn(T) V 

and Pfusion  = n² / 4  sn(T) V  Efusion (eq3)

 

Let us go back to our energy balance. In a stable state (dW/dt = 0) , we have :

Palpha + Pexternal = Plosses = W/ tE

Let us replace Pexternal by Pfusion /Q. We obtain :
Palpha + Pfusion /Q = W/ tE or even Pfusion ( Palpha /Pfusion + 1/Q ) = W/ t

Thus : Palpha /Pfusion= Ealpha /Efusion hence : 
Pfusion ( Ealpha /Efusion + 1/Q ) = W/ t


By replacing W and Pfusion by their respective expression nt>(eq1 et eq3), we obtain :
n² / 4sion  
sn(T) V  Efusion ( Ealpha /Efusion + 1/Q ) = 3 nkT V/ tE 

hence :

Lawson criterion

 

Application in figures :

k = 1 if Temperature and Energy are in keV
Efusion = 17.59 MeV = 17590 keV 
Ealpha = 3.56 MeV = 35600 keV
Q=
¥ (ignition)
Between 10 and 20 keV we have :
sn(T) ~ 1.18 10-24 T2 m-3s-1 (T en keV)
hence : 

n T t = 2.6 1021 keV m-3s-1

 

.Previous page Top


© CEA 2001 - All rights reserved