Comparisons of ayrokinetic PIC and CIP coterss

Yasuhiro Idomura
Japan Atomic Energy Research Institute
Festival de Theorie 2005
Aix-en-Provance, France, 4-22 July 2005

Outline

Introduction
Gyrokinetic Vlasov CIP code
Comparisons of ITG simulations between PIC and CIP
Summary

Motivation to develop gyrokinetic Vlasov codse

ETG turbulence in PS tokamaks

- In toroidal simulation, strong profile relaxation is often observed
- difficult to get quasi-steady χ
\rightarrow In reality, χ may be defined for quasi-steady profile balanced with heat source/sink

- Issues in realistic long time simulation of tokamak micro-turbulence
- Heat/particle-source/sink
\rightarrow determine transport level balanced with heat source/sink
\rightarrow simulate profile formation, modulation experiment
- Collision
\rightarrow collisional zonal flow damping, neoclassical effects
\rightarrow eliminate fine structures in phase space

Main features of PIC and Vlasov simulations

- Particle-In-Cell (PIC) simulation
- nonlinear of PIC method (Parker 1993) \rightarrow DF/Dt=0, DG/Dt=0 are assumed
- difficult to implement non-conservative effects
- limited for turbulent time scale simulation
- relatively small memory usage
- full torus global calculation is possible

- Vlasov simulation
- CFD scheme in 5D phase space \rightarrow difficult to find stable CFD scheme
- huge memory usage
- limited for local flux tube model
- non-conservative effects can be implemented
- long time simulation is possible

Main concept of CIP method (Yabe 1991)

CIP: Constrained Interpolation Profile method

- Let us consider a simple advection equation

$$
\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}=0
$$

\rightarrow linear interpolation causes numerical diffusion
\rightarrow higher order spline causes numerical oscillations

- Keep information between grids by solving $g=\frac{\partial f}{\partial x}$
$\frac{\partial g}{\partial t}+u \frac{\partial g}{\partial x}=-\frac{\partial u}{\partial x} g$
\rightarrow Hermite interpolation
- Propagation of square wave (after 200 time steps) (Kudoh 2002)

ITG turbulence in 4D drift-kinetic system

- 4D drift-kinetic-gyrokinetic-Poisson system

$$
\begin{aligned}
& \frac{\partial f}{\partial t}-\frac{c}{B_{0}} \frac{\partial \phi}{\partial y} \frac{\partial f}{\partial x}+\frac{c}{B_{0}} \frac{\partial \phi}{\partial x} \frac{\partial f}{\partial y}+v \frac{\partial f}{\partial z}-\frac{e}{m} \frac{\partial \phi}{\partial z} \frac{\partial f}{\partial v}=0 \\
& -\left(\nabla^{2}+\nabla_{\perp} \cdot \frac{\rho_{t i}^{2}}{\lambda_{D i}^{2}} \nabla_{\perp}\right) \phi+\frac{1}{\lambda_{D e}^{2}}(\phi-\langle\phi\rangle)=4 \pi e\left(\int f d v-n_{0}\right)
\end{aligned}
$$

- Numerical model
- Time integration using directional splitting (Cheng 1976) 2D CIP $(x-y)$ and 1D $\operatorname{CIP}(z, v)$ leap-frog like splitting rule $\rightarrow x y / 2-z / 2-v-z / 2-x y / 2$
- Field solver using FFT
- Fourier filter to emulate 2D-FEM $(x-y)$ and 1D-FSP(z) in PIC

$$
S_{m}\left(k_{x}, k_{y}, k_{z}\right)=\left(\frac{\sin \Delta x k_{x} / 2}{\Delta x k_{x} / 2}\right)^{m+1}\left(\frac{\sin \Delta y k_{y} / 2}{\Delta y k_{y} / 2}\right)^{m+1} \exp \left[-\frac{1}{2}\left(\frac{k_{z}}{k_{0}}\right)^{2}\right]
$$

m : order of spline function, $\quad k_{0}:$ width of gaussian FSP in k_{z}

Benchmark parameter

Ion temperature gradient driven (ITG) turbulence is simulated

- Calculation model
- slab geometry (x, y, z), periodic in x, y, z directions
- fixed boundary in v direction $f\left(v_{\text {max }}\right)=f\left(v_{\text {min }}\right)=0$
- uniform B in z direction, no magnetic shear
- flat n, T_{e} profiles
- T_{i} profile $T_{i}=c_{0}\left[1+c_{2} \sin \left(\pi x / L_{x}\right)^{2}\right]$
- Benchmark parameters
- $m_{\mathrm{i}}=1836 m_{\mathrm{e}}, B_{0}=2.5 \mathrm{~T}, T_{\mathrm{i} 0}=T_{\mathrm{e}}=5 \mathrm{keV}, L_{\mathrm{ti}}=0.3 \times 128 \rho_{\mathrm{ti}}$
- $L_{x}=2 L_{y}=32 \rho_{\mathrm{ti}}, L_{z}=8000 \rho_{\mathrm{ti}}, L_{v}= \pm 5 v_{\mathrm{ti}}$
- Standard case
- CFL=0.1, $N_{x} \times N_{y} \times N_{z} \times N_{v}=128 \times 64 \times 16 \times 64$

Numerical properties of GK Vlasov CIP codean

CIP, $C F L=0.1, N_{x} \times N_{y}=128 \times 64$

CIP, $C F L=0.1, N_{x} \times N_{y}=128 \times 64$

Gyrokinetic slab PIC code G3D

- Numerical model
- finite element $\delta \mathrm{f}$ PIC method
- 2D FEM $(x-y)+$ Fourier mode expansion (z)
$-4^{\text {th }}$ Runge-Kutta method
- Calculation model
- slab geometry (x, y, z), periodic in x, y, z directions
- uniform B in z direction, no magnetic shear
- flat n, T_{e} profiles
- T_{i} profile $T_{i}=c_{0}\left[1+c_{2} \sin \left(\tau x / L_{x}\right)^{2}\right]$
- Benchmark parameters
- $m_{\mathrm{i}}=1836 m_{\mathrm{e}}, B_{0}=2.5 \mathrm{~T}, T_{\mathrm{i} 0}=T_{\mathrm{e}}=5 \mathrm{keV}, L_{\mathrm{ti}}=0.3 \times 128 \rho_{\mathrm{ti}}$
$-L_{x}=2 L_{y}=32 \rho_{\mathrm{ti}}, L_{z}=8000 \rho_{\mathrm{ti}}$
- Standard case
$-\Delta t=20 \Omega_{i}^{-1}, N_{x} \times N_{y}=16 \times 16, k_{z}=0 \sim 6 /\left(2 \pi L_{z}\right)$

Linear eigenfunction and zonal flows

- CIP
linear phase

nonlinear phase

- PIC
linear phase

nonlinear phase

Linear growth rates and saturation amplitud动为

- Linear growth rates

- Saturation amplitude

- Results are converged against mesh/particle number
- Linear growth rates in CIP and PIC codes differ by $\sim 7 \%$
- Saturation levels coincide with each other

Energy and particle conservation

- Energy conservation
- Particle conservation

- Both codes show reasonably good energy and particle conservations <2 $\times 10^{-5}$
- PIC (CIP) code gives better energy (particle) conservation

Summary

- 4D drift-kinetic-GK-Poisson system is solved using CIP method
- Code is stable (positivity is satisfied, converged spectrum)
- Relative errors of particle and energy conservations are $<2 \times 10^{-5}$
- ITG growth rate and saturation level agree well with PIC code
\rightarrow Results obtained are almost equivalent to PIC code
- Computational cost on JAERI Origin3800 system
- CIP $\left(N_{x} \times N_{y}=128 \times 64\right) \sim 1.7 \mathrm{~GB}, 120 \mathrm{Gflops} \cdot \mathrm{h}(32 \mathrm{PE} 3.8 \mathrm{~h})$
- PIC (4M particles) ~ 27GB, 35Gflops'h (64PE 0.5h)
\rightarrow Vlasov code is possible solution to study non-conservative effects
- Future works
- development of 5D toroidal code
- benchmark against gyrokinetic toroidal PIC code GT3D
- development of heat source, collisions etc...

