

Yasuhiro Idomura Japan Atomic Energy Research Institute Festival de Theorie 2005 Aix-en-Provance, France, 4-22 July 2005

Outline

- Introduction
- Gyrokinetic Vlasov CIP code
- Comparisons of ITG simulations between PIC and CIP
- Summary

Motivation to develop gyrokinetic Vlasov code

- In toroidal simulation, strong profile relaxation is often observed
 - difficult to get quasi-steady χ
 - → In reality, *χ* may be defined for quasi-steady profile balanced with heat source/sink

ETG turbulence in PS tokamaks

Issues in realistic long time simulation of tokamak micro-turbulence

- Heat/particle-source/sink
 - \rightarrow determine transport level balanced with heat source/sink
 - \rightarrow simulate profile formation, modulation experiment
- Collision
 - \rightarrow collisional zonal flow damping, neoclassical effects
 - \rightarrow eliminate fine structures in phase space

Main features of PIC and Vlasov simulation

- Particle-In-Cell (PIC) simulation
 - − nonlinear δf PIC method (Parker 1993) → D*F*/D*t*=0, D*G*/D*t*=0 are assumed
 - difficult to implement non-conservative effects
 - limited for turbulent time scale simulation
 - relatively small memory usage
 - full torus global calculation is possible
- Vlasov simulation
 - CFD scheme in 5D phase space
 - \rightarrow difficult to find stable CFD scheme
 - huge memory usage
 - limited for local flux tube model
 - non-conservative effects can be implemented
 - long time simulation is possible

Main concept of CIP method (Yabe 1991)

CIP: Constrained Interpolation Profile method

• Let us consider a simple advection equation

→linear interpolation causes numerical diffusion

- →higher order spline causes numerical oscillations
- Keep information between grids by solving $g = \frac{\partial f}{\partial x}$ $\frac{\partial g}{\partial t} + u \frac{\partial g}{\partial x} = -\frac{\partial u}{\partial x} g$ \rightarrow Hermite interpolation

Comparison among CIP and other methods

5

• Propagation of square wave (after 200 time steps) (Kudoh 2002)

ITG turbulence in 4D drift-kinetic system

• 4D drift-kinetic-gyrokinetic-Poisson system

$$\frac{\partial f}{\partial t} - \frac{c}{B_0} \frac{\partial \phi}{\partial y} \frac{\partial f}{\partial x} + \frac{c}{B_0} \frac{\partial \phi}{\partial x} \frac{\partial f}{\partial y} + v \frac{\partial f}{\partial z} - \frac{e}{m} \frac{\partial \phi}{\partial z} \frac{\partial f}{\partial v} = 0$$
$$- \left(\nabla^2 + \nabla_\perp \cdot \frac{\rho_{ti}^2}{\lambda_{Di}^2} \nabla_\perp \right) \phi + \frac{1}{\lambda_{De}^2} \left(\phi - \left\langle \phi \right\rangle \right) = 4\pi e \left(\int f dv - n_0 \right)$$

- Numerical model
 - Time integration using directional splitting (Cheng 1976) 2D CIP(*x*-*y*) and 1D CIP(*z*,*v*) leap-frog like splitting rule $\rightarrow xy/2-z/2-v-z/2-xy/2$
 - Field solver using FFT
 - Fourier filter to emulate 2D-FEM(*x*-*y*) and 1D-FSP(*z*) in PIC

$$S_m(k_x, k_y, k_z) = \left(\frac{\sin \Delta x k_x / 2}{\Delta x k_x / 2}\right)^{m+1} \left(\frac{\sin \Delta y k_y / 2}{\Delta y k_y / 2}\right)^{m+1} \exp\left[-\frac{1}{2} \left(\frac{k_z}{k_0}\right)^2\right]$$

m : order of spline function, k_0 : width of gaussian FSP in k_z

Benchmark parameter

Ion temperature gradient driven (ITG) turbulence is simulated

- Calculation model
 - slab geometry (x,y,z), periodic in x, y, z directions
 - fixed boundary in *v* direction $f(v_{max}) = f(v_{min}) = 0$
 - uniform **B** in z direction, no magnetic shear
 - flat n, T_e profiles
 - $T_{\rm i}$ profile $T_{\rm i} = c_0 \left[1 + c_2 \sin(\pi x/L_x)^2 \right]$
- Benchmark parameters
 - $-m_{i}$ =1836 m_{e} , B_{0} =2.5T, T_{i0} = T_{e} =5keV, L_{ti} =0.3 × 128 ρ_{ti}
 - $-L_x = 2L_y = 32\rho_{ti}, L_z = 8000\rho_{ti}, L_v = \pm 5v_{ti}$
- Standard case

- CFL=0.1, $N_x \times N_y \times N_z \times N_v = 128 \times 64 \times 16 \times 64$

Numerical properties of GK Vlasov CIP code

8

Gyrokinetic slab PIC code G3D

- Numerical model
 - finite element δ f PIC method
 - 2D FEM(x-y) + Fourier mode expansion (z)
 - 4th Runge-Kutta method
- Calculation model
 - slab geometry (x,y,z), periodic in x, y, z directions
 - uniform **B** in z direction, no magnetic shear
 - flat n, T_{e} profiles
 - T_{i} profile $T_{i} = c_{0} \left[1 + c_{2} \sin(\pi x/L_{x})^{2} \right]$
- Benchmark parameters
 - $-m_{i}$ =1836 m_{e} , B_{0} =2.5T, T_{i0} = T_{e} =5keV, L_{ti} =0.3 × 128 ρ_{ti}
 - $-L_x = 2L_y = 32\rho_{ti}, L_z = 8000\rho_{ti}$
- Standard case
 - $-\Delta t=20 \Omega_{i}^{-1}, N_{x} \times N_{y}=16 \times 16, k_{z}=0 \sim 6/(2\pi L_{z})$

Linear eigenfunction and zonal flows

• CIP

• PIC

linear phase

nonlinear phase

linear phase

nonlinear phase

Linear growth rates and saturation amplitude

• Linear growth rates

• Saturation amplitude

- Results are converged against mesh/particle number
- Linear growth rates in CIP and PIC codes differ by ~7%
- Saturation levels coincide with each other

• Energy conservation

• Particle conservation

- Both codes show reasonably good energy and particle conservations <2 × 10⁻⁵
- PIC (CIP) code gives better energy (particle) conservation

Summary

- 4D drift-kinetic-GK-Poisson system is solved using CIP method
 - Code is stable (positivity is satisfied, converged spectrum)
 - Relative errors of particle and energy conservations are $< 2 \times 10^{-5}$
 - ITG growth rate and saturation level agree well with PIC code
 - → Results obtained are almost equivalent to PIC code
- Computational cost on JAERI Origin3800 system
 - CIP $(N_x \times N_y = 128 \times 64) \sim 1.7$ GB,120Gflops h (32PE 3.8h)
 - PIC (4M particles) ~ 27GB, 35Gflops h (64PE 0.5h)
 - \rightarrow Vlasov code is possible solution to study non-conservative effects
- Future works
 - development of 5D toroidal code
 - benchmark against gyrokinetic toroidal PIC code GT3D
 - development of heat source, collisions etc...