

Some challenges to the theory of astrophysical dynamos

Fausto Cattaneo

Center for Magnetic-Self Organization and Department of Mathematics

University of Chicago

cattaneo@flash.uchicago.edu

Before we start...

Observations

- Magnetic fields are ubiquitous
- Dynamo action invoked to explain origin and maintenance (WMAP → hardly any field at recombination)
- Often $|\langle \mathbf{B} \rangle|^2 \approx U^2$

2 m

300 Kp

2003/11/17 13:05

700,000 Km

6400 Km

Historical considerations

- 1919 Dynamo action introduced (Larmor)
- 30's 50's Anti-dynamo theorems (Cowling; Zel'dovich)
- 50's 60's Averaging is introduced → Formulation of Mean Field Electrodynamics (Parker 1955; Braginskii 1964; Steenbeck, Krause & Radler 1966)
- 90's now Large scale computing. MHD equations can be solved directly (everybody with a big computer)

Mean Field Theory

• Evolution equations for the Mean field (homogeneous, isotropic case)

$$\partial_t \langle \mathbf{B} \rangle = \alpha \nabla \times \langle \mathbf{B} \rangle + \beta \nabla^2 \langle \mathbf{B} \rangle$$

- Transport coefficients determined by velocity and R_m
 - α mean induction—requires lack of reflectional symmetry (helicity)
 - β turbulent diffusivity
- Many assumption needed
 - Linear relation between $\langle \mathbf{u} \times \mathbf{b} \rangle$ and $\langle \mathbf{B} \rangle$
 - Separations of scales
- FOS (quasi-linear) approximation
 - Short correlation time
 - $-R_m \ll 1$
- Assumed that fluctuations not self-excited

Troubles

In order for MFT to work:

- fluctuations must be controlled by smoothing procedure (averages)
- system must be strongly <u>irreversible</u>

When $R_m \ll 1$ irreversibility provided by diffusion When $R_m >> 1$, problems arise:

- development of long memory → loss of irreversibility
- unbounded growth of fluctuations

Two examples

- Exactly solvable kinematic model (Kazantsev-Kraichnan)
 - lots of assumptions
 - can be treated analytically
- Nonlinear rotating convection
 - fewer assumptions
 - solved numerically

- Model for random passive advection (Kazentsev 1968; Kraichnan 1968)
- Velocity: zero mean, stationary, homogeneous, isotropic, incompressible, Gaussian and delta-correlated in time
- Exact evolution equation for magnetic field correlator

$$\left\langle u_{i}(\mathbf{x},t)u_{j}(\mathbf{x}',t')\right\rangle = \kappa_{ij}(\left|\mathbf{x}-\mathbf{x}'\right|)\delta(t-t')$$

$$\kappa_{ij}(x) = \kappa_{N}(x)\left(\delta_{ij} - \frac{x_{i}x_{j}}{x^{2}}\right) + \kappa_{L}(x)\frac{x_{i}x_{j}}{x^{2}} + g\varepsilon_{ijk}x_{k}$$

$$\nabla \cdot \mathbf{u} = 0 \quad \Rightarrow \quad \kappa_{N} = \kappa_{L} + (x \kappa_{L}')/2$$

Input: velocity correlator

$$\kappa_L$$
, g

$$\left\langle B_{i}(\mathbf{x},t)B_{j}(\mathbf{x}',t)\right\rangle = H_{ij}(\left|\mathbf{x}-\mathbf{x}'\right|)$$

$$H_{ij}(x) = M_{N}(x)\left(\delta_{ij} - \frac{x_{i}x_{j}}{x^{2}}\right) + M_{L}(x)\frac{x_{i}x_{j}}{x^{2}} + K\varepsilon_{ijk}x_{k}$$

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad M_{N} = M_{L} + (xM'_{L})/2$$

Ouput: magnetic correlator

$$M_L$$
, K

- Exact evolution equation
 - Non-helical case (C= 0): Kazantsev 1968
 - Helical case: Vainshtein & Kichatinov 1986; Kim & Hughes 1997
 - Spectral version: Kulsrud & Anderson 1992; Berger & Rosner 1995
 - Symmetric form: Boldyrev, Cattaneo & Rosner 2005

$$\begin{bmatrix} \partial_t W_2 \\ \partial_t W_3 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{x} E \frac{\sqrt{2}}{x} & \frac{\sqrt{2}}{x^2} C \frac{\partial}{\partial x} x^2 \\ -x^2 \frac{\partial}{\partial x} C \frac{\sqrt{2}}{x^2} & x^2 \frac{\partial}{\partial x} \frac{B}{x^2} \frac{\partial}{\partial x} x^2 \end{bmatrix} \begin{bmatrix} W_2 \\ W_3 \end{bmatrix}$$

$$M_L = \frac{\sqrt{2}}{x^2} W_2, \qquad K = -\frac{1}{\sqrt{2}x^4} \frac{\partial}{\partial x} (x^2 W_3)$$

Operator in square brackets is self-adjoint

- Dynamo growth rate from MFT: $\lambda_o = \alpha^2 / 2\beta$
- In this model MFT is exact; with $\alpha = 2g_o$, $\beta = 2\eta + \kappa_o \approx \kappa_o$
- Dynamo growth rate of mean field: $\lambda_o = g_o^2 / \kappa_o \approx u / \ell$
- Dynamo growth rate of fluctuations: $\lambda \approx u(\ell_{\eta})/\ell_{\eta} > u/\ell$
- Large scale asymptotics of corresponding eigenfunction

$$M_{\lambda}, K_{\lambda} \propto \frac{1}{x} \exp(\lambda t - \kappa_{\lambda} x) \times \text{oscillatory terms}$$

$$\kappa_{\lambda} = \left[\left(\lambda - \lambda_0 \right) / \kappa_o \right]^{1/2}$$

Conclusion:

- For a fixed time t, large enough spatial scales exist such that averages of the fluctuations are negligible.
 - on these scales the evolution of the average field is described by MFT

However

• For any spatial scale x, contributions from mean field to the correlator at those scales quickly becomes subdominant

Fluctuations eventually take over on any scale

Convectively driven dynamos with rotation

Rotating convection

- Turbulent convection with near-unit Rossby number
- System has strong small-scale fluctuations
- No evidence for mean field generation

Non rotating Rotating

What is going on?

- System has helicity, yet no mean field
- Consider two possibilities:
 - Nonlinear saturation of turbulent α-effect
 (Cattaneo & Vainshtein 1991; Kulsrud & Anderson 1992; Gruzinov & Diamond 1994)
 - α-effect is "collisional" and not turbulent

Averages and α-effect

Introduce (external) uniform mean field. Compute below dynamo threshold.

Calculate average emf. Extremely slow convergence.

Convectively driven dynamos

The α -effect here is inversely proportional to Pm (i.e. proportional to η).

It is therefore *not* turbulent but collisional

- Convergence requires huge sample size.
 - Divergence with decreasing η ?
- Small-scale dynamo is turbulent but α-effects is not!!

... and now for something completely different

Something completely different

- Interaction between localized velocity shear and weak background poloidal field generates intense toroidal magnetic structures
- Magnetic buoyancy leads to complex spatio-temporal beahviour

Cline, Brummell & Cattaneo

Shear driven dynamo

- Slight modification of shear profile leads to sustained dynamo action
- System exhibits cyclic behaviour, reversals, even episodes of reduced activity

Conclusion

- In turbulent dynamos behaviour dominated by fluctuations
- Averages not well defined for realistic sample sizes
- In realistic cases large-scale field generation possibly driven by non-universal mechanisms
 - Shear
 - Large scale motions
 - Boundary effects
 - Etc. etc.

The end

Kazantsev model

$$\langle u_i(\mathbf{x},t)u_j(\mathbf{x'},t')\rangle = K_{ij}(\mathbf{x}-\mathbf{x'})\delta(t-t')$$

$$K_{ij}(\mathbf{r}) = K_N(r) \left(\delta_{ij} - \frac{r_i r_j}{r^2} \right) + K_L(r) \frac{r_i r_j}{r^2}$$

$$\nabla \cdot \mathbf{u} = 0 \implies K_N = K_L + (rK_L')/2$$

Isotropy + reflectional symmetry

Solenoidality

$$\langle B_i(\mathbf{x},t)B_j(\mathbf{x}',t)\rangle = H_{ij}(\mathbf{x}-\mathbf{x}',t)$$

Magnetic correlation function

$$\partial_t H_L = KH_L'' + \left(\frac{4}{r} + K'\right)H_L' + \left(\frac{4}{r}K' + K''\right)H_L$$
where $K(r) = 2\eta + K_L(0) - K_L(r)$

Kazantsev equation

Renormalized correlator

$$H_{L} = \psi(r,t)r^{-2}K(r)^{-1/2}$$

$$V(r) = \frac{2}{r^{2}}K(r) - \frac{1}{2}K''(r) - \frac{2}{r}K'(r) - \frac{(K'(r))^{2}}{4K(r)}$$

Funny transformation

Funny potential

$$\partial_t \psi = K(r) \psi'' - V(r) \psi$$

Sort of Schrödinger equation

