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INTRODUCTION

• Species of interest:   Alpha particles in burning plasmas
  NBI-produced fast ions
  ICRH-produced fast ions
  Others…

• Initial fear: Alfvén eigenmodes (TAEs) with global
spatial structure may cause global losses of
fast particles

• Second thought: Only resonant particles can be affected by
low-amplitude modes
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PHYSICS INGREDIENTS

• Resonant wave-particle interaction

• Continuous injection of energetic particles

• Collisional relaxation of the particle distribution

• Discrete spectrum of unstable waves

• Background damping of linear modes
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TRANSPORT MECHANISMS

• Neoclassical:   Large excursions of resonant 
particles (banana orbits) + collisional mixing

• Convective: Locking in resonance + collisional drag
BGK modes with frequency chirping

• Quasilinear : Phase-space diffusion over a set of 
overlapped resonances

Important Issue: Individual resonances are narrow.  How can
they affect every particle in phase space?
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NEAR-THRESHOLD NONLINEAR REGIMES

• Why study the nonlinear response near the threshold?
– Typically, macroscopic plasma parameters evolve slowly compared to

the instability growth time scale
– Perturbation technique is adequate near the instability threshold

• Single-mode case:
– Identification of the soft and hard nonlinear regimes is crucial to

determining whether an unstable system will remain at marginal stability
– Bifurcations at single-mode saturation can be analyzed
– The formation of long-lived coherent nonlinear structure is possible

• Multi-mode case:
– Multi-mode scenarios with marginal stability (and possibly transport

barriers) are interesting
– Resonance overlap can cause global diffusion
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WAVE-PARTICLE LAGRANGIAN

• Perturbed guiding center Lagrangian:

• Dynamical variables:
•                      are  the action-angle variables for the particle

unperturbed motion
•        is the mode amplitude
•        is the mode phase

• Matrix element               is a given function, determined by the
linear mode structure

• Mode energy:
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PARTICLE LAGRANGIAN

• Guiding center Lagrangian (Littlejohn)

• Dynamical variables:

• For low-frequency perturbations (          ), change in particle
energy is negligible compared to the change in toroidal
angular momentum:

• Reduced guiding center Lagrangian:
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REDUCTION TO BUMP-ON-TAIL PROBLEM

• Action-angle variables for unperturbed motion:

• Transformed Lagrangian:

• Resonance condition:

• Lagrangian for 1-D electrostatic bump-on-tail problem:
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MULTI-MODE FORMALISM

• Electric field representation

• Distribution function

• Wave equation :

• Kinetic equation:
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CONVECTIVE AND DIFFUSIVE
TRANSPORT
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CONVECTIVE TRANSPORT IN PHASE SPACE

• Single-mode
instability can lead to
coherent structures
– Can cause

convective transport
– Single mode: limited

extent
– Multiple modes:

extended transport
(“avalanche”)

N. Petviashvili, et al., Phys. Lett. A  (1998)
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 TAE modes in MAST

    (Culham Laboratory, U. K. courtesy
  of Mikhail Gryaznevich)

IFS numerical simulation
Petviashvili [Phys. Lett. (1998)]

γL≡ linear growth without
dissipation; for spontaneous hole
formation; γL≈ γd.
ωb =(ekE/m)1/2 ≈ 0.5γL

With geometry and energetic
particle distribution known internal
perturbed fields can be inferred

DETERMINATION OF INTERNAL FIELDS
BY FREQUENCY SWEEPING OBSERVATION

S. Pinches et al., Plasma Phys. and  Cont. Fusion (2004)
H. Berk et al., IAEA (2004) TH/5-2Ra
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INTERMITTENT LOSSES OF FAST IONS

• Experiments show both
benign and deleterious
effects

• Rapid losses in early TAE
experiments:
– Wong (TFTR)
– Heidbrink (DIII-D)

• Simulation of rapid loss:
– Todo, Berk, and Breizman,

Phys. Plasmas (2003)
– Multiple modes (n=1, 2, 3) K.L. Wong et al., PRL (1991)
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INTERMITTENT QUASILINEAR DIFFUSION

Classical distribution

Marginal distribution

RESONANCES

Metastable distribution

Sub-critical distribution

A weak source (with insufficient power to overlap the
resonances) is unable to maintain steady quasilinear diffusion

Bursts occur near the marginally stable case

f
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SIMULATION OF INTERMITTENT LOSSES

• Simulations reproduce NBI
beam ion loss in TFTR

• Synchronized TAE bursts:
– At 2.9 ms time intervals (cf. 2.2

ms in experiments)
– Beam energy 10% modulation

per burst (cf. 7% in experiment)

• TAE activity reduces stored
beam energy wrt to that for
classical slowing-down ions
– 40% for co-injected ions
– Larger reduction (by 88%) for

counter-injected beam ions
(due to orbit position wrt limiter)

K.L. Wong et al., PRL (1991)

stored beam energy
with TAE turbulence

Y. Todo et al., Phys Plasmas (2003)
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Figure 8 (Y. Todo et al.)

TEMPORAL RELAXATION OF RADIAL PROFILE

• Counter-injected beam ions:
– Confined only near plasma axis

Y. Todo et al., PoP (2003)

• Co-injected beam ions:
– Well confined
– Pressure gradient periodically

collapses at criticality
– Large pressure gradient is

sustained toward plasma edge
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PHASE SPACE RESONANCES

For low amplitude modes:
δB/B = 1.5 X 10-4

n=1, n=2, n=3

At mode saturation:
δB/B = 1.5 X 10-2

n=1, n=2, n=3
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ISSUES IN MODELING DIFFUSIVE TRANSPORT

• Reconciliation of mode saturation levels with experimental data
– Simulations (Y. Todo) reproduce experimental behavior for repetition

rate and accumulation level
– However, saturation amplitude appears to be larger than exp’tal

measurements

• Edge effects in fast particle transport
– Sufficient to suppress modes locally near the edge
– Need better description of edge plasma parameters

• Transport barriers for marginally stable profiles

• Resonance overlap in 3D
– Different behavior: (1) strong beam anisotropy, (3) fewer resonances
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FISHBONES

(example of hard nonlinear response)
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FISHBONE ONSET

• Linear responses from kinetic (wave-particle) and fluid
(continuum) resonances are in balance at instability threshold;
however, their nonlinear responses differ significantly.

• Questions:
– Which resonance produces the dominant nonlinear response?
– Is this resonance stabilizing or destabilizing?

• Approach:
– Analyze the nonlinear regime near the instability threshold
– Perform hybrid kinetic-MHD simulations to study strong nonlinearity
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LINEAR NEAR-THRESHOLD MODE

∆ = rωτAs −1

δ ~ γ

Double resonance layer at ω = ± Ω(r)

A. Odblom et al., Phys Plasmas (2002)

Frequency ω and growth rate γ

Energetic ion drive
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EARLY NONLINEAR DYNAMICS
• Weak MHD nonlinearity of the q = 1 surface destabilizes

fishbone perturbations
– Near threshold, fluid nonlinearity dominates over kinetic nonlinearity
– As mode grows, q profile is flattened locally (near q=1) → continuum

damping reduced → explosive growth is triggered
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UNEXPLAINED FISHBONE FEATURES

• Transition from explosive growth to slowly growing MHD
structure (i.e., island near q=1 surface)

• Modification of fast particle distribution

• Mode saturation and decay

• Quantitative simulation of frequency sweeping
– Frequency change during explosive phase suggests mode will slow

down and saturate

• Burst repetition rate in presence of injection
– Need to include sources/sinks/collisions


