Theory of shear stabilization

Eun-jin Kim
Pept. of Applied Math
University of Sheffield

21 July 2005

· Simple rule for the L-H transition

Shearing turb. decor. rate
tate

Peduce transport & turb, level

How much reduction by 12?

· Boedo et al 102

T & n (2 (4 5 3.6)

Temy et al (0) $(\partial_t + \vec{u} \cdot \vec{r}) n = D \nabla^2 n$ with $\vec{u} = \vec{V}_{tur} + \vec{u}_0$

=> < n'u> < (u;) , cos & < [u'i]

< n' u' > = \(\lambda \rightarrow \righta

- · Can passive scalar field model capture turbulence in real tokamules?
- · Is there a universal scaling of flux with s?
- Is a cross-phase (cost) a dominant suppression mechanism?
- · Reduction of flux by mean \$x\$ (sc)
 and zonal flows (arms = [CV63)
- Effect of shear flow on intermittent transport carried by a coherent structure?

Outline

- · Mean vs random shearing
- · Turbulent transport
 - Passive scalar model
 - Interchange turbulence
 - · IntermHent transport

II. Coherent vs Random Shearing

$$k_x(t) = k_x(0) + k_y \int_0^t \Omega(t')dt' \quad [\mathbf{U} = -x\Omega(t)\hat{y}]$$

1. Coherent shearing with constant Ω $(k_x^2 \propto t^2)$

$$\Rightarrow D \int_{0}^{t} dt' k_{x}^{2}(t') \propto D k_{y}^{2} \Omega^{2} t^{3}$$

$$\Rightarrow \tau_{\Delta} = (\tau_{\eta}/\Omega^{2})^{1/3} \quad [\tau_{\eta} = 1/D k_{y}^{2}]$$

2. Random shearing with au_{ZF} $(k_x^2 \propto t)$

$$\Rightarrow D \int_{0}^{t} dt' k_x^2(t') \propto D k_y^2 \tau_{ZF} \Omega_{rms}^2 t^2$$

$$\Rightarrow \tau_D = (\tau_{\eta}/\tau_{ZF} \Omega_{rms}^2)^{1/2} = (\tau_{\eta}/\Omega_{eff})^{1/2}$$

- For $\Omega = \Omega_{rms}$, $\tau_{\Delta} \leq \tau_{D}$
- If $au_{ZF} < \Omega_{rms}^{-1}$, $\Omega_{eff} = au_{ZF} \Omega_{rms}^2 < \Omega_{rms}$
- For $au_{ZF}\gg au_D$, $\Omega(t)\sim{
 m const} o au_D= au_\Delta$

Shear decorrelation

Mean $\mathbf{E} \times \mathbf{B}$ flow $\langle V_E \rangle$

Zonal flow $ilde{V}_E$

Mean flow (coherent shearing):

$$\langle V_E \rangle = \langle V_{ heta} \rangle - \frac{B_{ heta}}{B} \langle V_{\phi} \rangle - \frac{1}{eB_z n} \frac{\partial p_i}{\partial r} + \tau$$

Zonal flows (random shearing):

$$\partial_t \phi_{ZF} = \langle \tilde{v}_x \tilde{v}_y \rangle - \nu \phi_{ZF}$$

III. Turbulent transport

[Kim & Diamond '03;'04]

1. Passive scalar field n

$$(\partial_t + \mathbf{u} \cdot \nabla)n = D\nabla^2 n$$

Quasi-linear analysis with

$$\mathbf{u} = \mathbf{U} + \mathbf{v}, \quad n = n_0(x) + n'$$

- v: Given (prescribed) turbulent flow
- $U(x,t) = -x\Omega(t)$ [mean or zonal flows]

• Compute $\langle n'^2 \rangle, \langle n'v_x \rangle = -D_T^{xx} \partial_x n_0$ (D_T is the turbulent diffusivity)

Let

$$n'(\mathbf{x},t) = \frac{1}{(2\pi)^3} \int d^3k \tilde{n}(\mathbf{k},t) e^{i(k_x(t)x + k_y y + k_z z)}$$

where

$$k_x(t) = k_x(0) + k_y \int_0^t dt_1 \Omega(t_1)$$

and similarly for v

- Consider $(\tau_D, \tau_\Delta) \gg (\tau_c, \tau_\Omega)$
- Flux $\Gamma = \langle n'v_x \rangle = \sum_{\mathbf{k}} |n'(\mathbf{k})| |v_x(-\mathbf{k})| \cos \delta_{\mathbf{k}}$

Time scales

- τ_{ZF} : correlation time of zonal flows
- τ_c : correlation time of turbulent flow v
- $\tau_{\Omega} = \Omega^{-1}, \Omega_{rms}^{-1}$: shearing time scale
- τ_{Δ}, τ_{D} : decorrelation time due to coherent and random shearing

• For mean flow or zonal flow with $\tau_D \ll \tau_{ZF}$ ($\Omega_{rms} \sim \Omega$)

$ au_c < au_\Omega$		$ au_{\Omega} < au_{c}$	
$\langle n'v_x \rangle$	Ω_0	Ω^{-1}	
$\langle n'^2 \rangle$	$ au_\Delta \propto \Omega^{-1}$	$ au_\Delta\Omega^{-1}\propto\Omega^{-5/3}D^{-1/3}$	

• For zonal flow with $\tau_c < \tau_{ZF} \ll \tau_D$ and Gaussian PDFs:

	$ au_c < au_\Omega$	$ au_{\Omega} < au_{c}$	
$\langle\langle n'v_x \rangle\rangle$	Ω_{rms}^0	Ω_{rms}^{-1}	
$\langle\langle n'^2\rangle\rangle$	$ au_D \propto \Omega_{rms}^{-1}$	$ au_D\Omega_{rms}^{-1}\propto\Omega_{rms}^{-2}D^{-1/2}$	

Note: $\langle \langle n'^2 \rangle \rangle / \langle n'^2 \rangle = \tau_D / \tau_\Delta > 1$

Conclusions from passive scalar fields

- Flux $(\Gamma \propto \Omega^{-1} \text{ or } \Omega_{rms}^{-1})$ is weakly reduced
- Cross phase $\cos \delta$ ($\propto \Omega^{-1/6}$) is very weakly reduced [cf Terry et al '01: $\Gamma \propto \Omega^{-4}, \cos \delta \propto \Omega^{-3}$]
- Effect of random shearing of zonal flows on transport and fluctuation levels depends on correlation time τ_{ZF}
- $\langle\langle n'^2 \rangle\rangle_{ZF} \propto \tau_D \Omega_{rms}^{-1} \propto \Omega_{rms}^{-2} (>\langle n'^2 \rangle \propto \tau_\Delta \Omega^{-1} \propto \Omega^{-5/3})$ is due to LONGER decorrelation time $(\tau_D > \tau_\Delta)$ induced by finite τ_{ZF}
- Exact scaling with Ω or Ω_{rms} depends on the property of given turbulent flow
- Limitation of scalar field model: turbulent flow is arbitrary GIVEN (i.e., No shearing effect on turbulent flow)
- \Rightarrow Scalings of Γ and Q in a self-consistent model (Effect of Ω on $|v_x|$)?

3. Particle transport in interchange turbulence

[Kim, Diamond, & Hahm '04; Kim '05]

$$(\partial_t + U\partial_x)n = -v_x\partial_x N_0 + D\nabla^2 n + S$$

$$(\partial_t + U\partial_x)\omega = -g\frac{\partial_y n}{N_0} + \nu \nabla^2 \omega$$

where g is effective gravity; S is noise

- $U = -x\Omega(t)$
- $\omega \hat{z} = \nabla \times \mathbf{v}$
- $\bullet D = \nu$
- Total noise $f = S v_x \partial_x N_0 + ...$ (corr. time τ_f)
- Consider $(\tau_D, \tau_\Delta) \gg (\tau_f, \tau_\Omega)$

Time scales

- τ_f : correlation time of total noise f
- $\tau_{\Omega} = \Omega^{-1}, \Omega_{rms}^{-1}$: shearing time scale
- τ_{Δ}, τ_{D} : decorrelation time due to coherent and random shearing

$ au_D \ll au_{ZF}$			$ au_D\gg au_{ZF}$
	$ au_f < au_\Omega$	$ au_f > au_\Omega$	$ au_f < au_\Omega$
$\langle\langle nv_x \rangle\rangle$	$\Omega^{-2} \ln \left(\tau_{\Delta} \Omega \right)$	$\Omega^{-3} \ln \Omega$	$ au_D\Omega_{eff}^{-1}\propto\Omega_{rms}^{-3}$
$\langle\langle n^2 \rangle\rangle$	$ au_\Delta \propto \Omega^{-2/3}$	$\Omega^{-5/3}$	$ au_D \propto \Omega_{rms}^{-1}$
$\langle\langle v_x^2 \rangle\rangle$	Ω^{-3}	Ω^{-4}	$ au_D\Omega_{eff}^{-2}\propto\Omega_{rms}^{-5}$
$\langle\langle v_x v_y \rangle\rangle$	$-\Omega^{-3}\ln\Omega$	$-\Omega^{-4}\ln\Omega$	

- ullet Strong reduction in the flux due to severe reduction in $\langle\langle v_x^2 \rangle\rangle$
- Reduction in cross-phase is very weak ($\propto \Omega^{-1/6} \ln \Omega$) [Falchetto and Ottaviani, '04]
- Reynolds stress is reduced by shearing
- Significant reduction by random shearing by zonal flows

IV. Intermittent Transport

[Kim '05]

Passive scalar field n

1. Coherent structure $U_s(y)\hat{x} = |U_s|\cos(p_y y + \omega_s t)\hat{x}$

$$[\partial_t + U_s(y)\partial_y]n = D\nabla^2 n$$

- $\Rightarrow n = n_0(x) + n_s(y)$
- \Rightarrow $\langle n_s U_s \rangle$ gives $D_{eff} = DU_s^2 p_y^2/[\omega_s^2 + (Dp_y)^2]$ [Zeldovich '82]
- 2. Coherent structure (n_s, U_s) + turbulence + mean shear flow $U_0(x)\hat{y} = -x\Omega\hat{y}$
- Turbulence: $D \to D_T$
- Shearing by Ω:

$$D_T \propto \Omega^{-1}, \langle n_s U_s \rangle \propto D_T \Omega^{-2}$$

$$\Rightarrow$$
 $D_{eff} \propto \Omega^{-3}$

VI. Conclusions

- Zonal flows trigger L-H transition while mean flows maintain H-mode after the transition
- Model dependent reduction in the flux and turbulence amplitude → Stronger reduction in interchange turbulence due to the suppression of velocity amplitude
- In all cases, cross phase $\cos \delta$ is very weakly reduced
- Effect of random shearing of zonal flows on transport and fluctuation levels depends on correlation time τ_{ZF}
- Random shearing can lead to significant reduction in interchange turbulence (larger transport as compared to coherent shearing)
- Significant reduction in intermittent transport

- Determination of τ_{ZF} and study on transport vs τ_{ZF}
- · Effects of flow shear on blobs
- Effects of magnetic shear, toroidal geometry
- Generation and effects of zonal fields
- PDFs for intermittent transport (Kim et al '02;'03) ⇒ interaction among coherent structures,
 PDFs of L-H transition
- Incorporation of spatial information: pedestal, front propagation