Gyrokinetic simulations of ETG turbulence and zonal flows in positive/reversed shear tokamaks

Yasuhiro Idomura

Japan Atomic Energy Research Institute
Festival de Theorie 2005
Aix-en-Provance, France, 4-22 July 2005

Outline

- Gyrokinetic simulations of toroidal ETG turbulence
 - Linear and quasi-linear analysis of ETG mode
 - ETG turbulence simulation in PS/RS tokamaks
- Self-organization in ETG turbulence

Motivation to study ETG turbulence

- ullet ETG turbulence is experimentally relevant candidate of $\chi_{
 m e}$ in tokamak
 - High suppression threshold $\omega_{ExB} > \gamma$ than TEM (Stallard 1999)
 - Stiff $T_{\rm e}$ profile consistent with critical $L_{\rm te}$ of ETG (Hoang 2001)
- Issues to be addressed

Does $\rho_{\rm e}$ scale ETG turbulence cause experimentaly relevant $\chi_{\rm e}$?

- Yes: $\chi_e \sim 10 \chi_{GB} (\chi_{GB} = v_{te} \rho_{te}^2 / L_{te})$ in $\rho^{*-1} \sim \infty (\rho^{*-1} = a / \rho_{te})$ local flux tube toroidal GK code (Jenko 2002)
- No: $\chi_e \sim \chi_{GB}$ in $\rho^{*-1} \sim 100$ global toroidal GF code (Labit 2003)
- What kind of structure formations does ETG turbulence show?
- Streamers: positive shear flux tube toroidal GK code (Jenko 2002)
- Zonal flows: reversed shear global slab GK code (Idomura 2000)
- To examine these qualitatively and quantitatively different results,
 ETG turbulence is studied using global toroidal GK simulations
 - $-\rho^*$ -dependence of toroidal ETG modes
 - Zonal flow and streamer formations in PS/RS-ETG turbulence

Basic equations

Electrostatic gyrokinetic equation (Hahm 1988)

$$\begin{split} H &= \frac{1}{2} m_e v_{\parallel}^2 + \mu B + q_e \langle \phi \rangle_g \\ \frac{DF_e}{Dt} &= \frac{\partial F_e}{\partial t} + \{F_e, H\} = 0 \\ \frac{d\mathbf{R}}{dt} &\equiv \{\mathbf{R}, H\} = v_{\parallel} \mathbf{b} + \frac{c}{q_e B_{\parallel}^*} \mathbf{b} \times \left(q_e \nabla_{\mathbf{R}} \langle \phi \rangle_g + m_e v_{\parallel}^2 \mathbf{b} \cdot \nabla_{\mathbf{R}} \mathbf{b} + \mu B \nabla_{\mathbf{R}} \ln B \right) \\ \frac{dv_{\parallel}}{dt} &\equiv \{v_{\parallel}, H\} = -\frac{\mathbf{B}^*}{m_e B_{\parallel}^*} \cdot \left(q_e \nabla_{\mathbf{R}} \langle \phi \rangle_g + m_e v_{\parallel}^2 \mathbf{b} \cdot \nabla_{\mathbf{R}} \mathbf{b} + \mu B \nabla_{\mathbf{R}} \ln B \right) \\ \mathbf{B}^* &= \mathbf{B} + \frac{c m_e v_{\parallel}}{q_e} \nabla_{\mathbf{R}} \times \mathbf{b}, \quad \mu = \frac{m_e v_{\perp}^2}{2B} \end{split}$$

Gyrokinetic Poisson equation

$$-\nabla^2 \phi - \nabla_{\perp} \cdot \frac{\rho_{te}^2}{\lambda_{De}^2} \nabla_{\perp} \phi + \frac{1}{\lambda_{Di}^2} \phi = 4\pi q_e \int \delta F_e \delta ([\mathbf{R} + \mathbf{\rho}_e] - \mathbf{x}) m_e^2 B_{\parallel}^* d^6 \mathbf{Z}$$

Calculation models of ETG turbulence simulation

- Electrostatic GK toroidal PIC code
- Gyrokinetic electrons with adiabatic ions $(k_{\parallel}\rho_{ti}>>1)$
- Annular wedge torus geometry
 - fixed B.C. $\phi = 0$
 - n = 0, N, 2N... (N=25~100)
- Quasi-ballooning representation
- Global profile effects (n_e, T_e, q, 1/r)
 - Self-consistent T_e , n_e are relaxed by heat/particle transport
 - $-\omega_{te}^*$ -shearing effect
 - Reversed q(r) profile
- Optimized particle loading
 - energy/particle conservation

Validity of simulation is checked by conservation properties!

High-n solver with quasi-ballooning representation

$$\phi(r,\theta,\varphi) = \sum_{n} \hat{\phi}_{n}(r,\theta) e^{-in\varphi + in\hat{q}(r_{s})\hat{\theta}}, \quad \hat{\phi}_{n}(r,0) = \hat{\phi}_{n}(r,2\pi) e^{i2\pi n\hat{q}(r_{s})}, \quad r_{s} : \text{reference surface}$$

Realistic tokamak size $a/\rho_{\rm te}\sim 10^4$: $k_{\rm \theta}\rho_{\rm te}\sim 1~(q=1.4) \longrightarrow m=5000$

- ~10⁴ poloidal grids are needed without QB representation
- ~10² poloidal grids are enough with QB representation

Linear and quasi-linear analysis of ETG mode

Linear ETG growth rate spectrum

Cyclone like parameters (R_0/L_{te} =6.9, η_e =3.12, a~8600 ρ_{te} ~150 ρ_{ti})

- Unstable region spreads over $n\sim2000$ ($m\sim3000$, $k_0\rho_{te}\sim0.7$)
- RS-ETG mode is excited around q_{min} surface (Idomura 2000)
- Almost the same γ_{max} in PS and RS configurations

Toroidal mode coupling in PS/RS configuration

- Positive shear configuration
- Reversed shear configuration

- Ballooning PS-ETG mode
- Big streamer structure in weak field side

- Slab like RS-ETG mode
- Single helicity feature in weak shear region

ho^* scan of eigenfunctions in PS/RS tokamaks

Positive shear configuration

Reversed shear configuration

- Δr of PS-ETG mode is limited by ω^* -shearing effect (Kim 1994)
- △r of RS-ETG mode is determined by q profile (Idomura 2000)

Mixing length theory and ρ^* -scaling

- Mixing length theory of ETG modes in PS/RS plasmas
 - PS-ETG mode $\Delta r/\rho_{\rm te} \propto \rho^{*-1/2}$ $\longrightarrow \chi_{\rm ML}/\chi_{\rm GB} \propto \gamma_{\rm n} \rho^{*-1}$
 - RS-ETG mode $\Delta r/\rho_{\rm te} \propto (L_{\rm ns}/L_{\rm n})^{-1/2}$ \longrightarrow $\chi_{\rm ML}/\chi_{\rm GB} \propto \gamma_{\rm n} L_{\rm ns}/L_{\rm n}$ $\gamma_{\rm n} = \gamma L_{\rm n} / v_{\rm te}$ $L_{\rm n} = (d \ln n_{\rm e} / dr)^{-1}$ $L_{\rm ns} = (2qR_0 / q''r)^{1/2}$
- ρ^* scan of the saturation amplitude in single-*n* simulations

Fixed local parameters R_0/L_{te} =6.9, η_e =3.12 $k_0 \rho_{te} \sim 0.3$, $a/R_0 = 0.358$ $\gamma_{\rm NL}$: eddy turn over time

- Small ρ^* PS-ETG modes give order of magnitude higher saturation level than RS-ETG and large ρ^* PS-ETG modes

ETG turbulence simulation in PS/RS tokamaks

Streamer formation in PS-ETG turbulence

• QL streamers ($t v_{te}/L_n \sim 175$)

Saturation phase (t v_{te}/L_n ~208)

• Nonlinear streamers ($t v_{te}/L_n \sim 250$)

- PS-ETG turbulence is dominated by streamers
- Streamers are characterized by ballooning structure and $\omega \sim \omega_e^*$

Extremely high χ_e in PS-ETG turbulence

100 120 140 160 180 200 220 240

 $t/(L_n/v_{te})$

 $T_{\rm e}$ profile is strongly relaxed in a turbulent time scale ~5 γ^{-1}

Convergence of saturation levels against wedge

Time history of fluctuation field energy

- Saturation amplitude is converged against wedge torus size
- Does nonlinear toroidal mode coupling (Lin 2004) lower saturation level?

Convergence of *n*-spectrum against wedge size

1/100 wedge torus, 32 mode

1/25 wedge torus, 128 mode

- Nonlinear spectrum is converged to coherent streamer mode
- QL streamers are excited at linearly most unstable $k_{\theta}\rho_{\text{te}}$
- 2nd streamers have coherent structure with $k_0 \rho_{te} \sim 0.2$
- Zonal flow component is very small

Zonal flow formation in RS-ETG turbulence

Linear phase (t v_{te}/L_n ~110)

• Saturation phase $(t v_{te}/L_n \sim 207)$

Secondary mode (t v_{te}/L_n ~255)

• Zonal flow formation ($t v_{te}/L_n \sim 380$)

- RS-ETG turbulence show qualitatively different behavior across q_{\min}
- Zonal flows (streamers) appear in negative (positive) shear region

χ_e gap structure in RS-ETG turbulence

 $T_{\rm e}$ gradient is sustained above its critical value in quasi-steady state

Summary(1)

- ETG turbulence is studied using global toroidal GK simulations
- Initial saturation levels consistent with the mixing length theory
 - Ballooning PS-ETG modes show Bohm like ρ^* -scaling
 - Slab like RS-ETG modes show gyro-Bohm like ρ^* -scaling
 - Small ρ^* PS-ETG modes give an order of magnitude higher saturation level than RS-ETG and large ρ^* PS-ETG modes
- PS/RS ETG turbulences show different structure formations
 - PS-ETG turbulence is dominated by streamers
 - $T_{\rm e}$ profile is quickly relaxed by large $\chi_{\rm e} \sim 10 \chi_{\rm GB}$
 - RS-ETG turbulence is characterized by zonal flows (streamers) in negative (positive) shear region
 - $T_{\rm e}$ profile is sustained by $\chi_{\rm e}$ gap structure
- These results suggest a stiffness of T_e profile in PS tokamaks, and a possibility of the $T_{\rm e}$ transport barrier in RS tokamaks

Self-organization in ETG turbulence

Motivation to study self-organization of ETG-Z

- ZFs are common phenomena not only in drift wave turbulence but also in Rossby wave turbulence
- While ZFs in Rossby wave turbulence are formed by self-organization (Williams 1978), ITG-ZFs are generated by modulational instability (Chen 2000)
 - → Absence of adiabatic electron response to ITG-ZFs enhances modulational instability (Li 2002)
- In contrast, because of adiabatic ion response to ETG-ZFs, modulational instability is weak in ETG turbulence, and its governing equation is almost the same as Rossby wave turbulence
 - →Does similar generation mechanism exist?
- To clarify generation mechanism of ETG-ZFs, self-organization process is studied in decaying electron turbulence simulations
 - Inverse energy cascade
 - Rhines scale length

different? same?

Rhines scale length in Hasegawa-Mima Eq.

• In the limit of $k_{\parallel} \rightarrow 0$, slab GK equations reduce to HM equation

$$\frac{\partial}{\partial t} \left(\rho_s^2 \nabla_{\perp}^2 \phi - \tau \phi \right) + \mathbf{b} \times \nabla_{\perp} \phi \cdot \nabla_{\perp} \left(\rho_s^2 \nabla_{\perp}^2 \phi + \ln n_0 \right) = 0$$

$$\rho_s^2 = 1 + \lambda_{De}^2 / \rho_{te}^2, \quad \tau = T_e / T_i$$

Conservation of energy E and potential enstrophy W

$$E = \frac{1}{2} \int \phi^2 + (\nabla_{\perp} \phi)^2 dV, \quad W = \frac{1}{2} \int (\nabla_{\perp}^2 \phi)^2 + (\nabla_{\perp} \phi)^2 dV$$

- Turbulent binomial cascade (Hasegawa 1978)
- →Inverse energy cascade
 - c.f. Selective dissipation of W (Kraichnan 1967)
- k_r regimes with wave like (linear term) and turbulent (nonlinear term) features are separated by Rhines scale length (Rhines 1975)

$$k_{\beta}\rho_{s} = (\beta/2U)^{1/2} = 2^{-3/4}L_{n}^{-1/2}\varepsilon^{-1/4}$$
$$\beta = \nabla_{\perp} \ln n_{0} = L_{n}^{-1}, \quad U = (2\varepsilon)^{1/2}, \quad \varepsilon = \frac{1}{2}\int (\nabla_{\perp}\phi)^{2}dV$$

Decaying electron turbulence simulations

- Electrostatic GK slab PIC code (2.5D)
- Gyrokinetic electrons with adiabatic ions $(k_{\perp}\rho_{fi}>>1)$
- Single helicity shear less slab model for q_{\min} region
 - coordinate system (x,y,z) $\nabla_{\perp} \ln n_0 = L_n^{-1} \nabla x$, $\mathbf{B} = B_0 \nabla z + B_1 \nabla y$
 - fixed ($\phi = 0$) and periodic boundary conditions in x and y
 - system size $L_v = 292 \rho_{te}$, $L_x = 2 \sim 8L_v$
 - $-k_{\parallel} = B_1/|\mathbf{B}|k_v = 8 \times 10^{-5}k_v (k_z=0)$
 - →E and W decay by Landau damping
- Plasma parameters

$$- \rho_{\text{te}}^2 / \lambda_{\text{De}}^2 \sim 0.1, \ \tau \sim 0.3$$

$$L_{\rm n} = 183 \rho_{\rm te} \sim \infty$$
, $L_{\rm te} = \infty$

- Initial condition
 - sub-grid random noise
 - $-e\phi/T_{e} \sim 0.005$

Contour plot of ϕ at t = 0

Turbulent structure is changed by density gradit

Contour plot of ϕ in quasi-steady relaxed state ($t\Omega_i$ = 870)

•
$$L_n = \infty$$

• $L_{\rm n}$ =1462 $\rho_{\rm te}$

$$L_x$$
=2 L_y =584 ρ_{te}

- Anisotropic turbulent structure with zonal flows
- Zonal flows are produced by self-organization

- Coherent isotropic vortices are produced
- Merger of like-sign vortices and decrease of vortices
- →c.f. 2D fluid turbulence (McWilliams 1984)

Inverse energy cascade in self-organization

Decaying electron turbulence simulation with L_n =731 ρ_{te}

Time history of E and W

• Time history of $\bar{k}_x = \int k_x E_{k_x} dk_x / \int E_{k_x} dk_x$

$$X L_x = 8L_y = 2336 \rho_{te}$$

- W decays much faster than E
- Average zonal flow wave number shifts to upscale in time

Rhines scale length in electron turbulence

• Summary of E, W and \bar{k}_x values observed at $t\Omega_i = 1000$

$L_{\rm n}/ ho_{ m te}$	<i>E</i> (<i>t</i>)/ <i>E</i> (0)	<i>W</i> (<i>t</i>)/ <i>W</i> (0)	$ar{k}_{\!\scriptscriptstyle x} ho_{\!\scriptscriptstyle te}$
1462	0.079	0.012	0.178
731	0.362	0.039	0.188
366	0.634	0.087	0.240
183	0.761	0.136	0.301

• Scaling of L_n , ε and k_x

- Larger L_n^{-1} or ω^*/k_{\parallel} leads to fluid limit (small dissipation)
- $-\bar{k}_x$ becomes larger as L_n^{-1} increases
- Scaling $\bar{k}_{_{x}} \propto L_{_{n}}^{-1/2} \varepsilon^{-1/4}$ is consistent with Rhines scale length

Role of density gradient in ETG turbulence

ETG turbulence simulations with $\eta_e = L_n/L_{te} = \infty$ and $\eta_e = 5$

η_e=∞ (linear phase)

• $\eta_e = \infty$ (quasi-steady phase)

• η_e =5 (linear phase)

 \bullet η_e =5 (quasi-steady phase)

$\chi_{\rm e}$ and ETG zonal flows can be controled by

- Time history of $\chi_{\rm e}$ in ETG turbulence with $\eta_{\rm e}$ = ∞ and $\eta_{\rm e}$ =5
- $X L_{te}$ is chosen so that the same linear growth rates are given.

- Initial and quasi-steady saturation levels are $\chi_e \sim 14 \chi_{GB}$ ($\chi_e \sim 3 \chi_{GB}$) and $\chi_e \sim 3 \chi_{GB}$ ($\chi_e \sim 0.7 \chi_{GB}$) with $\eta_e = \infty$ ($\eta_e = 5$)
- $\chi_{\rm e}$ is enhanced more than 4 times by flat density profile.

Summary (2)

- Generation mechanism of ETG-ZFs is studied using decaying electron turbulence simulations
- ETG-ZFs are produced by self-organization processes
 - Inverse energy cascade is observed
 - ZF wave number is determined by Rhines scale length
 - →ETG-ZFs can be controlled by density gradient
- Controllability of ETG-ZF is tested in ETG turbulence simulations with and without density gradient
 - Isotropic (anisotropic) turbulent structure is produced without (with) density gradient
 - $-\chi_{\rm e}$ is enhanced more than 4 times by flat density profile
- Slab ETG model may explain χ_e in tokamak core region where toroidal ETG mode and trapped electron mode are weak