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Outline
Gyrokinetic simulations of toroidal ETG turbulence
- Linear and quasi-linear analysis of ETG mode
- ETG turbulence simulation in PS/RS tokamaks
Self-organization in ETG turbulence
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Motivation to study ETG turbulenceMotivation to study ETG turbulence
ETG turbulence is experimentally relevant candidate of χe in tokamak
– High suppression threshold ωExB > γ than TEM (Stallard 1999)
– Stiff Te profile consistent with critical Lte of ETG (Hoang 2001) 

Issues to be addressed
Does ρe scale ETG turbulence cause experimentaly relevant χe?
– Yes: χe~10χGB (χGB=vte ρ te

2/Lte) in ρ*-1~∞ (ρ*-1=a/ρ te) local flux 
tube toroidal GK code (Jenko 2002)

– No: χe~χGB in ρ*-1~100 global toroidal GF code (Labit 2003)
What kind of structure formations does ETG turbulence show?
– Streamers: positive shear flux tube toroidal GK code (Jenko 2002)
– Zonal flows: reversed shear global slab GK code (Idomura 2000)

To examine these qualitatively and quantitatively different results, 
ETG turbulence is studied using global toroidal GK simulations
– ρ*-dependence of toroidal ETG modes
– Zonal flow and streamer formations in PS/RS-ETG turbulence
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Basic equationsBasic equations
Electrostatic gyrokinetic equation (Hahm 1988)

Gyrokinetic Poisson equation
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Electrostatic GK toroidal PIC code 
Gyrokinetic electrons with adiabatic ions (k⊥ρti>>1)
Annular wedge torus geometry
– fixed B.C. φ = 0
– n = 0, N, 2N… (N=25~100)
Quasi-ballooning representation
Global profile effects (ne, Te, q, 1/r)
– Self-consistent Te, ne are relaxed by heat/particle transport
– ω*

te-shearing effect
– Reversed q(r) profile
Optimized particle loading
– energy/particle conservation

Calculation models of ETG turbulence simulationCalculation models of ETG turbulence simulation

Validity of simulation is checked
by conservation properties !
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HighHigh--nn solver with quasisolver with quasi--ballooning representationballooning representation

Realistic tokamak size a/ρte~104: kθρte~1 (q=1.4)      m=5000
– ~104 poloidal grids are needed without QB representation
– ~102 poloidal grids are enough with QB representation

jump condition
for periodicity in θ

mode structure
on the poloidal plane

mode structure
along the field line
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Linear and quasi-linear analysis of ETG mode
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Linear ETG growth rate spectrumLinear ETG growth rate spectrum
Cyclone like parameters (R0/Lte=6.9,ηe=3.12,a~8600ρte~150ρti)

– Unstable region spreads over n~2000 (m~3000, kθρte~0.7)
– RS-ETG mode is excited around qmin surface (Idomura 2000)
– Almost the same γmax in PS and RS configurations

analysis domain
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Toroidal mode coupling in PS/RS configurationsToroidal mode coupling in PS/RS configurations

Positive shear configuration

– Ballooning PS-ETG mode
– Big streamer structure in 

weak field side

Reversed shear configuration

– Slab like RS-ETG mode
– Single helicity feature in 

weak shear region

r

safety factor q

resonant surfaces

positive shearnegative shear

ballooning modestable mode
resonant perturbations

nonresonant
slab mode

r

safety factor q

q=m/n
q=(m+1)/n

q=(m-1)/n
q=(m-2)/n

q=(m+2)/n

resonant surfaces

resonant perturbations
ballooning mode

q=(m-3)/n
q=(m-4)/n

q=(m+3)/n
q=(m+4)/n



9

ρρ** scan of scan of eigenfunctionseigenfunctions in PS/RS tokamaksin PS/RS tokamaks
Positive shear configuration

– ∆r of PS-ETG mode is limited by ω*-shearing effect (Kim 1994)
– ∆r of RS-ETG mode is determined by q profile (Idomura 2000)

Reversed shear configuration

non-resonant resonant

~60ρte

~120ρte

a/ρte~536

a/ρte~2146 a/ρte~2146

a/ρte~536

qmin surface

~45ρte

~40ρte

2/1*
te/ −∝∆ ρρr
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Mixing length theory and Mixing length theory and ρρ**--scalingscaling
Mixing length theory of ETG modes in PS/RS plasmas
– PS-ETG mode 
– RS-ETG mode

ρ* scan of the saturation amplitude in single-n simulations

– Small ρ* PS-ETG modes give order of magnitude higher 
saturation level than RS-ETG and large ρ* PS-ETG modes

Fixed local parameters
R0/Lte=6.9, ηe=3.12
kθρte~0.3, a/R0=0.358
γNL: eddy turn over time

2/1*
te/ −∝∆ ρρr

( ) 2/1
nnste // −∝∆ LLr ρ
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nGBML / −∝ ργχχ
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ETG turbulence simulation in PS/RS tokamaks
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Streamer formation in PSStreamer formation in PS--ETG turbulenceETG turbulence
Linear phase (t vte/Ln ~110)

Saturation phase (t vte/Ln ~208)

– PS-ETG turbulence is dominated by streamers
– Streamers are characterized by ballooning structure and ω~ω*

e

QL streamers (t vte/Ln ~175)

Nonlinear streamers (t vte/Ln ~250)

kθρte ~ 0.27

kθρte ~ 0.17
ω ~ ω*

e

weak field side θ ~ 0

600ρte

θ
r
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χe/(vteρte
2/Lte)<VExB>/vte

R0/Lte
R0/Lte~6.9

R0/Lte~5.5

(R0/Lte)crit~4.5

~5γ -1

zonal flows

χe~10χGB

Te profile is strongly relaxed in a turbulent time scale ~5γ -1

Extremely high Extremely high χχe in PSin PS--ETG turbulencee ETG turbulence
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Convergence of saturation levels against wedge sizeConvergence of saturation levels against wedge size

Time history of fluctuation field energy

– Saturation amplitude is converged against wedge torus size
– Does nonlinear toroidal mode coupling (Lin 2004) lower 

saturation level? 
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Convergence of Convergence of nn--spectrum against wedge sizespectrum against wedge size

1/100 wedge torus, 32 mode 

– Nonlinear spectrum is converged to coherent streamer mode
– QL streamers are excited at linearly most unstable kθρte

– 2nd streamers have coherent structure with kθρte~0.2
– Zonal flow component is very small

1/25 wedge torus, 128 mode

|φn| (r/a~0.5)

second streamers
kθρte~0.17

quasi-linear streamers
kθρte~0.27
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Zonal flow formation in RSZonal flow formation in RS--ETG turbulenceETG turbulence
Linear phase (t vte/Ln ~110)

Secondary mode (t vte/Ln ~255)

– RS-ETG turbulence show qualitatively different behavior across qmin

– Zonal flows (streamers) appear in negative (positive) shear region  

Saturation phase (t vte/Ln ~207)

Zonal flow formation (t vte/Ln ~380)

qmin

kθρte ~ 0.27 weak field side θ ~ 0

600ρte

θ
r
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zonal flows R0/Lte

(R0/Lte)crit~3.7

qmin

χχee gap structure in RSgap structure in RS--ETG turbulenceETG turbulence

χe/(vteρte
2/Lte)<VExB>/vte qminqmin

Te gradient is sustained above its critical value in quasi-steady state

quasi-steady
zonal flows

χe suppression
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Summary(1)Summary(1)
ETG turbulence is studied using global toroidal GK simulations
Initial saturation levels consistent with the mixing length theory 
– Ballooning PS-ETG modes show Bohm like ρ*-scaling
– Slab like RS-ETG modes show gyro-Bohm like ρ*-scaling
– Small ρ* PS-ETG modes give an order of magnitude higher 

saturation level than RS-ETG and large ρ* PS-ETG modes
PS/RS ETG turbulences show different structure formations
– PS-ETG turbulence is dominated by streamers

Te profile is quickly relaxed by large χe~10χGB

– RS-ETG turbulence is characterized by zonal flows 
(streamers) in negative (positive) shear region

Te profile is sustained by χe gap structure 
These results suggest a stiffness of Te profile in PS tokamaks, 
and a possibility of the Te transport barrier in RS tokamaks
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Self-organization in ETG turbulence
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Motivation to study selfMotivation to study self--organization of ETGorganization of ETG--ZFZF
ZFs are common phenomena not only in drift wave 
turbulence but also in Rossby wave turbulence
While ZFs in Rossby wave turbulence are formed 
by self-organization (Williams 1978), ITG-ZFs are 
generated by modulational instability (Chen 2000)
→Absence of adiabatic electron response to ITG-

ZFs enhances modulational instability (Li 2002)
In contrast, because of adiabatic ion response to 
ETG-ZFs, modulational instability is weak in ETG 
turbulence, and its governing equation is almost 
the same as Rossby wave turbulence
→Does similar generation mechanism exist?

To clarify generation mechanism of ETG-ZFs, self-organization 
process is studied in decaying electron turbulence simulations
– Inverse energy cascade
– Rhines scale length

same?different?
ZF on planets

ZF in plasmas
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RhinesRhines scale length in Hasegawascale length in Hasegawa--MimaMima EqEq..
In the limit of k//→0, slab GK equations reduce to HM equation

Conservation of energy E and potential enstrophy W

– Turbulent binomial cascade (Hasegawa 1978)
→Inverse energy cascade

c.f. Selective dissipation of W (Kraichnan 1967)
kr regimes with wave like (linear term) and turbulent (nonlinear 
term) features are separated by Rhines scale length (Rhines 1975)
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Electrostatic GK slab PIC code (2.5D)
Gyrokinetic electrons with adiabatic ions (k⊥ρti>>1)
Single helicity shear less slab model for qmin region
– coordinate system (x,y,z)
– fixed (φ = 0) and periodic boundary conditions in x and y
– system size Ly = 292 ρte, Lx = 2 ~ 8Ly

– k// = B1/|B|ky = 8×10-5ky (kz=0)
→E and W decay by Landau damping
Plasma parameters
– ρte

2/λDe
2 ~ 0.1, τ ~ 0.3

– Ln = 183ρte ~ ∞, Lte = ∞
Initial condition 
– sub-grid random noise
– eφ/Te ~ 0.005

Decaying electron turbulence simulationsDecaying electron turbulence simulations

yBzBxLn n ∇+∇=∇=∇ −
⊥ 10

1
0 ,ln B

Contour plot of φ at t = 0
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Turbulent structure is changed by density gradientTurbulent structure is changed by density gradient
Contour plot of φ in quasi-steady relaxed state (tΩi = 870)

Ln=∞

– Coherent isotropic vortices 
are produced

– Merger of like-sign vortices 
and decrease of vortices

→c.f. 2D fluid turbulence 
(McWilliams 1984)

Ln=1462ρte

※Lx=2Ly=584ρte

– Anisotropic turbulent 
structure with zonal flows

– Zonal flows are produced 
by self-organization 
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Inverse energy cascade in selfInverse energy cascade in self--organizationorganization

Time history of E and W

※ Lx=8Ly=2336ρte

– W decays much faster than E
– Average zonal flow wave number shifts to upscale in time

Time history of ∫∫= xkxkxx dkEdkEkk
xx

Decaying electron turbulence simulation with Ln=731ρte
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RhinesRhines scale length in electron turbulencescale length in electron turbulence

Summary of E, W and    
values observed at tΩi = 1000

– Larger Ln
-1 or ω*/k// leads to fluid limit (small dissipation)

– becomes larger as Ln
-1 increases 

– Scaling                  is consistent with Rhines scale length

Scaling of Ln, ε and 

4/12/1 −−∝ εnx Lk

0.3010.1360.761183

0.2400.0870.634366

0.1880.0390.362731

0.1780.0120.0791462

ρteW(t)/W(0)E(t)/E(0)Ln/ρte xk

xk xk

xk
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Role of density gradient in ETG turbulenceRole of density gradient in ETG turbulence

ηe=∞ (linear phase)

ηe=∞ (quasi-steady phase)

ηe=5 (linear phase)

ηe=5 (quasi-steady phase)

ETG turbulence simulations with ηe=Ln/Lte=∞ and ηe=5
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χχee and ETG zonal flows can be and ETG zonal flows can be controledcontroled by by LLnn

Time history of χe in ETG turbulence with ηe=∞ and ηe=5
※ Lte is chosen so that the same linear growth rates are given. 

– Initial and quasi-steady saturation levels are χe~14χGB
(χe~3χGB) and χe~3χGB (χe~0.7χGB) with ηe=∞ (ηe=5)

– χe is enhanced more than 4 times by flat density profile.
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Summary (2)Summary (2)

Generation mechanism of ETG-ZFs is studied using decaying 
electron turbulence simulations
ETG-ZFs are produced by self-organization processes
– Inverse energy cascade is observed
– ZF wave number is determined by Rhines scale length
→ETG-ZFs can be controlled by density gradient

Controllability of ETG-ZF is tested in ETG turbulence simulations 
with and without density gradient
– Isotropic (anisotropic) turbulent structure is produced without 

(with) density gradient
– χe is enhanced more than 4 times by flat density profile

Slab ETG model may explain χe in tokamak core region where 
toroidal ETG mode and trapped electron mode are weak
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