Gyrokinetic Turbulence in Magnetized Plasmas

T.S. Hahm

Princeton University, Plasma Physics Laboratory, USA

Acknowledgment:

A. Brizard, L. Chen, P.H. Diamond, Z. Lin

3 Juillet 2 '05 Festival de Théorie, Aix-en-Provence, France

This Talk

- Why people do gyrokinetics?
- Modern Nonlinear Gyrokinetics:
 - Emphasis on Conservation Laws
 - Systematic Derivation
 - Clear Pathways to Generalization/Extensions
- Focus on Tokamak Microturbulence
- Illustration of Prominent Examples

Outline

- Properties of Tokamak Micro-turbulence
- Standard Nonlinear Gyrokinetic Theory
- Modern Nonlinear Gyrokinetics:
 - Single Particle Dynamics
 and Gyrokinetic Vlasov Equation
 - Gyrokinetic Maxwell's Equation
 and Pullback Transformation
- Further Extensions

Amplitude of Tokamak Micro-turbulence

- Relative fluctuation amplitude $\delta n/n_0$ at core typically less than 1 %
- At the edge, it can be greater than 10 %

Properties of Tokamak Micro-turbulence

- $\delta n/n_0 \sim 1 \%$
- $k_r \rho_i \sim k_\theta \rho_i \sim 0.1 \sim 0.2$
- $k_{||} < 1/qR << k_{\perp}$: Rarely measured
- ω − k · u_E ~ Δω ~ ω_{*pi}:
 Broad-band, sometimes Doppler-shift dominates
 in rotating plasmas

Heuristic Estimation of Diffusion Coefficient

$$\gamma = \gamma_{lin} - k_{\perp}^2 D_{turb} \to 0$$

 Nonlinear coupling induced dissipation leads to saturation (B. Kadomtsev '65)

- $D_{turb} \sim \gamma_{lin}/k_{\perp}^2 \sim (v_{Ti}/a)\rho_i^2$: GyroBohm scaling
- "Local Balance in Space" for a mode k
- "Conceptual Foundation of Most Transport Models"
- Missing:
 - Nonlocal Phenomena: Turbulence Spreading,...

Standard Nonlinear Gyrokinetic Ordering

[Frieman and Chen, Phys. Fluids 1982]

Minimum number of ordering assumptions

- $\frac{\omega}{\Omega_i} \sim \frac{k_{\parallel}}{k_{\perp}} \sim \epsilon << 1$
- k_⊥ρ_i ~ 1 for generality:

Short wavelength modes (with higher γ_{lin}) can affect the modes at NL peak $(k_{\perp}\rho_i \sim 0.1 \sim 0.2)$

through NL coupling.

 $ightarrow \omega \sim k_{\parallel} v_{Ti}$ for wave-particle resonance

i.e., Landau damping

•
$$\frac{\delta f}{f_0} \sim \frac{e\delta\phi}{T_e} \sim \frac{1}{k_\perp L_p} \sim \epsilon << 1$$

- $-k_{\perp}\frac{e\delta\phi}{T_e}\sim\frac{1}{L_p}$: **E** × **B** Nonlinearity ~ Linear Drive
- $-\delta n/n_0 \sim \rho/L \sim$ roughly experimental vaues.

Conventional Nonlinear Gyrokinetic Equation

[eg., Frieman and Chen, Phys. Fluids 1982]

- Foundations of Tokamak Nonlinear Kinetic Theory for analytic applications, ballooning codes...
- Ordering is minimal and generic
- Based on direct gyro-phase average of Vlasov equation
 Lots of algebra and book keeping
- Direct expansions in ε: Self-consisten up to O(ε²) →
 Should be fine for linear and nonlinear saturation phase
- Velocity space nonlinearity: $\nabla_{\parallel}\delta\phi\partial_{v\parallel}\delta f\sim O(\epsilon^3)$ is ignored. Energy, phase space volume **not** conserved.
- May not be able to describe long term behavior accurately [Villard, Hatzky, Sorge, Lee, Wang]
 - → Physics responsible for difference?

Modern Nonlinear Gyrokinetics

- Starting from the original Vlasov-Maxwell system (6D), pursue "Reduction of dimensionality" for both computational and analytic (cf. MNR) feasibility.
- Keep intact the underlying symmetry/conservation of the original system.
- Perturbation analysis consists of near-identity coordinate transformation which "decouples" the gyration from the slower dynamics of interest in the single particle Lagrangian, rather than a direct "gyro-phase average" of Vlasov equation.

Phase Space Lagrangian Derivation of Nonlinear Gyrokinetics

[since Hahm, PF 31, 2670 '88, followed by Brizard, Sugama,...]

- Conservations Laws are Satisfied.
- Various expansion parameters appear at different stages
 → Flexibility in variations of ordering
 for specific application
- Guiding center drift calculations in equilibrium field B: Expansion in $\delta_B \equiv \rho_i/L_B \sim \rho_i/R$.
- Perturbative analysis consists of near-identity transformations to new variables which remove the gyro-phase dependence in perturbed fields $\delta \mathbf{A}(\mathbf{x})$, $\delta \phi(\mathbf{x})$ where $\mathbf{x} = \mathbf{R} + \rho$: Expansion in $\epsilon_{\phi} \equiv e(\delta \phi - \frac{v_{\parallel}}{c} \delta A_{\parallel})/T_e \sim \delta B_{\parallel}/B_0$
- Derivation more transparent, less amount of algebra

Single Particle Phase Space Lagrangian

[Littlejohn, Cary '83,...]

 Fundamental 1-form (phase space Lagrangian in non-canonical variables)

$$\gamma \equiv (e\mathbf{A}(\mathbf{x}) + m\mathbf{v}) \cdot d\mathbf{x} - (m/2)v^2dt$$

- Transformation to guiding center variables: $\mathbf{x} \equiv \mathbf{R} + \rho$, $\mu \equiv v_{\perp}^2/2\Omega$, $\theta \equiv tan^{-1}(\frac{\mathbf{v} \cdot \mathbf{e_1}}{\mathbf{v} \cdot \mathbf{e_2}})$,...
- The zero-th order phase space Lagrangian for guiding center:

$$\gamma_0 = (e\mathbf{A} + mv_{\parallel}\mathbf{b}) \cdot d\mathbf{R} + \frac{\mu B}{\Omega} d\theta - H_0 dt$$

angle variable # is ignorable action is an adiabatic invariant #

$$H_0 = \mu B + (m/2)v_{\parallel}^2$$

Euler-Lagrange Equation

From variation of phase space Lagrangian:

$$\frac{d\theta}{dt} = \Omega, \frac{d\mu}{dt} = 0$$

Decoupling of gyromotion, adiabatic invariant

$$-e\mathbf{B}^* \times \frac{d\mathbf{R}}{dt} - m\mathbf{b}\frac{dv_{\parallel}}{dt} = \mu \nabla B$$
 where $\mathbf{B}^* \equiv \nabla \times (\mathbf{A} + \frac{m}{c}v_{\parallel}\mathbf{b}) = \mathbf{B} + \frac{m}{c}v_{\parallel}\nabla \times \mathbf{b}$

Decompose via bx and B*, to get

$$\frac{d\mathbf{R}}{dt} = v_{\parallel} \frac{\mathbf{B}^*}{B^*} + \frac{\mu}{e} \frac{\mathbf{b}}{B^*} \times \nabla B, \frac{dv_{\parallel}}{dt} = -\frac{\mu}{m} \frac{\mathbf{B}^*}{B^*} \cdot \nabla B$$

More on Guiding Center Drift

Frequently asked question:

"Where is the curvature drift?"

Using an identity $\mathbf{B}^* = B^*\mathbf{b} + \frac{m}{e}v_{\parallel}\mathbf{b} \times (\mathbf{b} \cdot \nabla)\mathbf{b}$:

$$\frac{d\mathbf{R}}{dt} = v_{\parallel} \frac{B^*\mathbf{b} + \frac{m}{e}v_{\parallel}\mathbf{b} \times (\mathbf{b} \cdot \nabla)\mathbf{b}}{B^*} + \frac{\mu}{e} \frac{\mathbf{b}}{B^*} \times \nabla B$$

 Infrequently asked question: "Do conventional guiding center drifts conserve energy?"

$$\frac{d\mathbf{R}}{dt} = v_{\parallel}\mathbf{b} + \mathbf{v}_{curv} + \mathbf{v}_{gradB}, \frac{dv_{\parallel}}{dt} = -\frac{\mu}{m}\mathbf{b} \cdot \nabla B$$

do not conserve energy exactly, while our E-L eqns do.

- B* is a manifestation of Hamiltonian structure
- B^* is the density of phase-volume, $d^6{f Z}=B^*d\mu d\theta dv_{\parallel}d^3{f R}$

Lie Perturbative Analysis

[from Hahm, PF 31, 2670 '88]

- Consider electrostatic fluctuation only (for illustration): $\delta\phi(\mathbf{x}) = \delta\phi(\mathbf{R} + \rho)$
- While gyromotion has been decouple in the zero-th order phase space Lagrangian, it appears again in the perturbation. Since it is O(ε), we can remove it via near-identity, phase-space preserving Lie transform.
- In addition to zero-th order γ_0 , $\gamma_1 = -e\delta\phi(\mathbf{R} + \rho)dt$
- Perform Lie-perturbation:

$$\Gamma_1=\gamma_1-L_1\gamma_0+dS_1$$
 where $(L_1\gamma)_\mu=g_1^\nu(\frac{\partial\gamma_\mu}{\partial z^\nu}-\frac{\partial\gamma_\nu}{\partial z^\mu})$, transformation of 1 form

Lie Perturbative Analysis

- One can choose the gauge function S₁ and the generator g₁ such that the gyrophase is removed from Γ₁
- · We obtain,

$$\Gamma_1 = -e < \delta \phi > dt$$

where < ... > is the gyrophase average $\frac{1}{2\pi} \int (...)$

- Now, $\Gamma = \Gamma_0 e < \delta\phi > dt$, $H = H_0 + H_1 = \mu B + (m/2)v_{||}^2 + e < \delta\phi >$
- Note that decoupled gyrophase information is kept in $dS_1 = \frac{e}{\Omega}(\delta\phi < \delta\phi >)d\theta$ and g_1 to be used later when necessary.
- The second order perturbation in ε_φ ~ ρ/L_p is necessary for energy conservation.

Gyrokinetic Vlasov-Poisson System

• With Euler-Lagrange Eqns, Gyrokinetic Vlasov equation for gyrocenter distribution function $F(R, \overline{\mu}, \overline{v}_{\parallel}, t)$ is:

$$\frac{\partial F}{\partial t} + \frac{d\overline{R}}{dt} \cdot \overline{\nabla} F + \frac{d\overline{v}_{\parallel}}{dt} \frac{\partial F}{\partial \overline{v}_{\parallel}} = 0$$

Note reduction of dimensionality achieved by $\frac{\partial F}{\partial \theta} = 0, \frac{d\overline{\mu}}{dt} = 0$

- Self-consistency is enforced by the Poisson's equation.
 Debye shielding is typically irrelevant, one must express the ion particle density n_i(x) in terms of the gyrocenter distribution function F(R, \overline{\mu}, v_{||}, t)
- Lee [PF 26, 556 '83] has identified the polarization density (in addition to the guiding center density). It was a key breakthrough in advances in GK particle simulations.

$$\delta n_i(\mathbf{x}) = \delta n_{gc} + \rho_i^2 \nabla_{\perp} \cdot N_0 \nabla_{\perp} (e \delta \phi / T_i)$$

Extensions to Edge

[for core transport barriers → Hahm, Phys. Plasmas 3, 4658, '96]

Expansion in $\epsilon_B \sim \rho_i/L_E \sim \frac{B_\theta}{B}$:

- From $ho_{ip} \sim L_P \sim L_E$, $u_E \sim u_{*i} \sim \frac{\rho_i}{L_p} v_{Ti}$, $\frac{e\Phi^{(0)}}{T_e} \sim 1$.
- $|S-1| \sim 1$ (banana orbit distortion), $\frac{\omega_E}{\Omega_i} \sim \epsilon_B^2$ (circular gyro-orbit) where $\omega_E \equiv \frac{(RB_\theta)^2}{B} \frac{\partial}{\partial \psi} (\frac{E_r}{RB_\theta})$ [Hahm-Burrell, PoP '95] $S \simeq 1 + (\frac{B}{B_\theta})^2 \frac{\omega_E}{\Omega_i}$ [Hinton-Kim, Furth-Rosenbluth, Shaing,...]
- The zero-th order phase space Lagrangian

$$\gamma_0 \equiv (e\mathbf{A} + m\mathbf{u}_E + m\mathbf{v}_{\parallel}\mathbf{b}) \cdot d\mathbf{R} + \frac{\mu B}{\Omega}d\theta - H_0dt$$

with a guiding-center Hamiltonian

$$H_0 = e\Phi + \mu B + (m/2)(v_{\parallel}^2 + u_E^2) + \frac{\mu B}{2\Omega} \mathbf{b} \cdot \nabla \times \mathbf{u}_E.$$

Pullback Transformation

 More systematic derivation of GK Poisson's eqn started since Dubin et al., [PF 26, 3524 '83] via pullback transformation:

$$\nabla^2 \delta \phi = -4\pi e \left[\int d^6 \overline{Z} \, \left(T_G^* \delta f \right) \delta^3 (\overline{R} - \mathbf{x} + \overline{\rho}) - \delta n_e(\mathbf{x}, t) \right],$$

where

$$T_{G}^{*}\delta f \equiv \delta f + \left(\frac{\partial S_{1}}{\partial \overline{\theta}}\right) \frac{\partial F_{0}}{\partial \overline{\mu}} + \left[\frac{1}{\Omega} \left(\overline{\nabla} S_{1}\right) \times \mathbf{b}\right] \cdot \overline{\nabla} F_{0}$$

Contribution to the ion particle density which involves S₁ is the general form of polarization density. After linearization,

$$\{k^2 \lambda_{Di}^2\} \frac{e\delta \phi_{\mathbf{k}}}{T_{i\perp}} n_0 + \{1 - \Gamma_0(b)\} \frac{e\delta \phi_{\mathbf{k}}}{T_{i\perp}} n_0 = \delta \overline{N}_{i\mathbf{k}} - \delta n_{e\mathbf{k}}$$

It is well known that the polarization density statisfies

$$\frac{\partial}{\partial t} \delta n^{pol} + \frac{\partial}{\partial \mathbf{x}} \cdot n_0 \mathbf{v}^{pol} = 0$$

[eg., Fong and Hahm, PoP 6, 188 '99]

Conservation of Energy and Phase-Space Volume

It is straight-forward to show the Liouville's theorem:

$$\overline{\nabla} \cdot \left(B_{\parallel}^* \frac{d\overline{R}}{dt} \right) + \frac{\partial}{\partial \overline{v}_{\parallel}} \left(B_{\parallel}^* \frac{d\overline{v}_{\parallel}}{dt} \right) = 0$$

The invariant energy for GK Vlasov-Poisson system is obtained by transforming the energy constant of the original Vlasov-Poisson system [Dubin et al., '83]

$$E = \int d^{6}\mathbf{Z} F_{i}(\mu B + \frac{M}{2}v_{\parallel}^{2}) + \int d^{6}\mathbf{z} f_{e}(\mathbf{z}) \frac{1}{2} m_{e}v^{2}$$

$$+\frac{1}{8\pi}\int d^3\mathbf{x}\,|\mathbf{E}|^2+\frac{e^2}{2\Omega}\int d^6\mathbf{Z}\,F_i\left(\frac{\partial}{\partial\mu}\langle\delta\tilde{\phi}^2\rangle+\frac{1}{\Omega}\langle\nabla\delta\tilde{\Phi}\times\mathbf{b}\cdot\nabla\delta\tilde{\phi}\rangle\right)$$

Note that the last term can be obtained from perturbation up to $O(\epsilon_{\phi}^2)$.

Summary

- Modern Nonlinear Gyrokinetic Theory has provided a firm theoretical foundation for recent remarkable advances in gyrokinetic simulations and associated theories.
- Its elegance and relative simplicity have contributed to deeper understanding of the gyrokinetic system and its relation to other reduced system of equations.
- It should be useful for even more complicated systems where several expansion parameters exist.

References on Nonlinear Gyrokinetic Theory I.

 Pioneering papers on conventional NL GK and NL GK for particle simulation:
 Frieman and Chen, PF 25, 502 '82
 Lee, PF 26, 556 '83

 Early Modern NL GK using Hamiltonian method (Darboux Theorem) in slab:
 Dubin, Krommes, Oberman, and Lee, PF 26, 3524 '83 (Electrostatic)

Hahm, Lee, and Brizard, PF 31, 1940 '88 (Electromagnetic, canonical momentum formulation)

Modern NL GK using phase-space Lagrangian
 Lie perturbation method:

Hahm, PF 31, 2670 '88 (General geometry, electrostatic)
Brizard, J. Plasma Phys. 41, 541 '89
(General geometry, electromagnetic)

References on Nonlinear Gyrokinetic Theory II.

 Robustness of NL GK formulation in the high amplitude DK regime:

Dimits, Lodestro, Dubin, PF-B 4, 274 (form of eqns unchanged from Hahm-Lee-Brizard '88)

NL GK for strongly rotating plasmas:
 Brizard, PoP 2, 459 '95 (in terms of toroidal rotation)
 Hahm, PoP 3, 4658 '96 (in terms of E_r)

Energy conservation theorem:

Brizard, PoP 7, 4816 '00

Sugama, PoP 7, 466 '00 (introduction of field theory)

References on Topics related to Modern NL GK using phase-space Lagrangian Method

- Bounce-averaged Nonlinear Kinetic equation
 Fong and Hahm, PoP 6, 188 '99 (electrostatic)
 Brizard, PoP 7, 3238 '00 (electromagnetic)
- High frequency linear gyrokinetic theory:
 Qin and Tang, PoP 11, 1052 '04 (recovery of compressional Alfven wave, elucidation of differential geometrical meaning of pullback transformation