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This Talk

e Why people do gyrokinetics?

e Modern Nonlinear Gyrokinetics:

— Emphasis on Conservation Laws

— Systematic Derivation

— Clear Pathways to Generalization/Extensions
- I.:r:ncus on Tokamak Microturbulence

e Jllustration of Prominent Examples



Outline

e Properties of Tokamak Micro-turbulence
e Standard Nonlinear Gyrokinetic Theory
e Modern Nonlinear Gyrokinetics:
— Single Particle Dynamics
and Gyrokinetic Vlasov Equation
— Gyrokinetic Maxwell's Equation
and Pullback Transformation
e Further Extensions



Amplitude of Tokamak Micro-turbulence
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e Relative fluctuation amplitude dn/ng at core

typically less than 1 %

e At the edge, it can be greater than 10 %



Properties of Tokamak Micro-turbulence

e dn/ng~ 1 %

® krp; ~ kgp; ~ 0.1~ 0.2

e ky <1/qR << k;: Rarely measured

o w—Kk ug~ Aw ~ wyp;!
Broad-band, sometimes Doppler-shift dominates
in rotating plasmas



Heuristic Estimation of Diffusion Coefficient

Y= Min — sz_Dtu-r'b —+ 0

e Nonlinear coupling induced dissipation leads to saturation
(B. Kadomtsev '65)

amplitude (log scale)

il

amplitude a l t
Dyyrp ~ Tﬁﬂ-fki b (“T?.frﬂf}ﬂf GyroBohm scaling
“Local Balance in Space" for a mode k
“"Conceptual Foundation of Most Transport Models"
Missing:
— Nonlocal Phenomena: Turbulence Spreading,...




Standard Nonlinear Gyrokinetic Ordering

[Frieman and Chen, Phys. Fluids 1982]

Minimum number of ordering assumptions

[ ] E%_ P ;Hl- e 1
e k| p;i ~ 1 for generality:
Short wavelength modes (with higher ,) can affect the modes at
NL peak (k.p; ~0.1 ~0.2)
through NL coupling.

— w ~ Kjjvri for wave-particle resonance
i.e., Landau damping

af i |
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— —T? L: E x B Nonlinearity ~ Linear Drive
P’

— dnfng ~ p/L ~ roughly experimental vaues.



Conventional Nonlinear Gyrokinetic Equation

leg., Frieman and Chen, Phys. Fluids 1982]

e Foundations of Tokamak Nonlinear Kinetic Theory
for analytic applications, ballooning codes...
e Ordering is minimal and generic
e Based on direct gyro-phase average of Viasov equation
Lots of algebra and book keeping
e Direct expansions in e: Self-consisten up to O(e2) —
Should be fine for linear and nonlinear saturation phase
* Velocity space nonlinearity: V| d¢a,df ~ 0(€3) is ignored.
Energy, phase space volume not conserved.
e May not be able to describe long term behavior accurately
[Villard, Hatzky, Sorge, Lee, Wang]
—+ Physics responsible for difference?



Modern Nonlinear Gyrokinetics

e Starting from the original Viasov-Maxwell system (6D),
pursue “Reduction of dimensionality' for both
computational and analytic (cf. MNR) feasibility.

» Keep intact the underlying symmetry/conservation of the
original system.

e Perturbation analysis consists of near-identity coordinate
transformation which *“decouples” the gyration from the
slower dynamics of interest in the single particle Lagrangian,
rather than a direct "gyro-phase average” of Viasov equa-
tion.



Phase Space Lagrangian Derivation
of Nonlinear Gyrokinetics

is'ln-:e Hahm, PF 31, 2670 '88, followed by Brizard, Sugama,...]

Conservations Laws are Satisfied.

Various expansion parameters appear at different stages
— Flexibility in variations of ordering

for specific application

Guiding center drift calculations in equilibrium field B:
Expansion in dg=p;/Lg ~ p;f_ﬁ'..

Perturbative analysis consists of near-identity transforma-
tions to new variables which remove the gyro-phase de-
pendence in perturbed fields dA(x), do(x) where x = R4+;
Expansion in €h = e(dg — I{—i!lﬁﬂ")f'}} s (?H”/H{]

Derivation more transparent, less amount of algebra



Single Particle Phase Space Lagrangian

[Littlejohn, Cary '83,...]

e Fundamental 1-form (phase space Lagrangian in
non-canonical variables)

= (eA(x) + mv) - dx — (m/2)v?dt

e ITransformation to guiding center variables:
x=R+4p, pn= w;J_jiﬂ = fcm‘l{w—-l)

o T he zero-th order phase space Lagrangmn
for guiding center:

Yo = (eA + .rrm”h) dR + fe’rir’ — Hgdt

angle variable ¢ is ignorable
action is an adiabatic invariant ;s

Ho= uB + (fﬂf?)ﬂﬁ



Euler-Lagrange Equation

e From variation of phase space Lagrangian:
¢ dp
n'rl'I f”

—EB*J{% - mba— = N8

where B* = Vx(A + “yb) =B + 2y Vxb
e Decompose via bx and B*, to get

iR B* ub dv
B g R e DL PR
il ey it m B



More on Guiding Center Drift

Frequently asked question:
“Where is the curvature drift?”
Using an identity B' = B*b + "oyb x (b - V)b

f_,ER B*h + '”II J'H]} > 'Eil' ; T}II 7 b

—_— ' ——xVEB

dt B* t B
Infrequently asked question: "Do conventional guiding
center drifts conserve energy?"”

dR vy

— =y b+ veure + v ,— = ——hb-VDB

df I T Veurs T gk ¢lt m
do not conserve energy exactly, while our E-L egns do.
B* is a manifestation of Hamiiltonian structure

B* is the density of phase-volume, d°Z = B*dudfduyd®R




Lie Perturbative Analysis

[from Hahm, PF 31, 2670 '88]

Consider electrostatic fluctuation only (for illustration):
dp(x) = dp(R + )

While gyromotion has been decouple in the zero-th order
phase space Lagrangian, it appears again in the perturba-
tion. Since it is O(e), we can remove it via near-identity,
phase-space preserving Lie transform.

In addition to zero-th order vg, 11 = —ed(R + p)di
Perform Lie-perturbation:

M1 =71 — Livo + d5;
where (L17)u = g4(32% — $%), transformation of 1 form



Lie Perturbative Analysis

One can choose the gauge function S; and the generator
g1 such that the gyrophase is removed from M4
We obtain,

M= —e < 8¢ > di

where < ... > is the gyrophase average ‘z‘l??f("-}

Now, T =Tg—e< d¢ > di,

H = Hg+ H; =;LB+(m;’2)vﬁ+E{§cﬁi}

Note that decoupled gyrophase information is kept in
dS, = &(d¢— < d¢ >)df and gy to be used later when
necessary.

The second order perturbation in ¢, ~ p/Ly s necessary
for energy conservation.



GyrokKinetic Viasov-Poisson System

o With Euler-Lagrange Eqns, Gyrokinetic Vlasov equation
for gyrocenter distribution function F( /1, ;ﬁ,ﬁ“ft) is:

oF dR d'v|| OF
-VF
ot + dit + fdt E’.-i"_”
Note reduction of dimensionality achieved by
9k — 0,9 =0
[ B |

e Self-consistency is enforced by the Poisson's equation.
Debye shielding is typically irrelevant, one must express
the ion particle density n;(x) in terms of the gyrocenter
distribution function F(Rﬂ-*ﬁ”fﬁ}

e Lee [PF 26, 556 '83] has identified the polarization den-
sity (in addition to the guiding center density). It was a
key breakthrough in advances in GK particle simulations.

oni(x) = dnge + ;1??.] - NogV | (edd/T;)



Extensions to Edge

[for core transport barriers — Hahm, Phys. Plasmas 3, 4658, '96]

Expansion in eg ~ p;/Lg ~ —‘%ﬂ:

e From py, ~ Lp ~ L,

- (0)
W ™~ Uy f‘;ﬂi'i- E‘d’_}'}'le_' o

e |S—1| ~ 1 (banana orbit distortion), %ﬂ ~ EEE (circular gyro-orbit)

)2
where wg = (HH fm( } [Hahm-Burrell, PoP '95]

Sr~1+4 {EE}E‘{# [Hintt::n—lv{frn, Furth-Rosenbluth, Shaing,...]
i

e T he zero-th order phase space Lagrangian

Yo = (eA 4+ muy + mu"b) dR. - ﬂd{? Hqgdt

with a guiding-center Hamiltonian

;LB

Hﬂ = ed + J[.EB + ('TH{IE}(TJ” —I— ﬂ.h} + l} V X .



Pull kK Tran 1

More systematic derivation of GK Poisson's eqn started
since Dubin et al.,[PF 26, 3524 '83] via pullback trans-

formation:
V25 = —ame] f 457 (T2567) 63(R — x + B) — dne(x, t)],
where

a51\ dF =
I8 F —._-'if+( 1) ;‘ + [— (V1) x b]- Vg
Contribution to the ion particle density which involves Sy
is the general form of polarization density. After lineariza-

tion,

eo ed gy =
{k273;} Tfnn +{1-To(0)}— T SNy — 6Ny
i [
It is well known that the pofanzatmn density statisfies
o

anPo! cnavP? =0
dt -I- 0

[eg., Fong and Hahm, F’DF’ E, 188 '99]



Conservation of Energy
and Phase-Space Volume

e It is straight-forward to show the Liouville's theorem:

— dR a du)|
V- |Bl—|+—|(B}—| =0
( ||c£t)+8—||( [ f.qf,)

e The invariant energy for GK Vlasov-Poisson system is ob-
tained by transforming the energy constant of the original
Vlasov-Poisson system [Dubin et al.,'83]

E= deZF(pB—}— uﬁ)+/dﬁzfe(z) mev>

+8iﬂ"[ Py E|2+_ [z F, (_(5@% + =(V5® x b vaqb})

Note that the last term can be obtained from perturbation

up to U(Eﬁ];



Summary

¢ Modern Nonlinear Gyrokinetic Theory has provided a firm
theoretical foundation for recent remarkable advances in
agyrokinetic simulations and associated theories.

e [ts elegance and relative simplicity have contributed to
deeper understanding of the gyrokinetic system and its
relation to other reduced system of equations.

e It should be useful for even more complicated systems
where several expansion parameters exist.
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References on Nonlinear Gyrokinetic Theory 1.

e Pioneering papers on conventional NL GK
and NL GK for particle simulation:
Frieman and Chen, PF 25, 502 '82
Lee, PF 26, 556 '83

¢ Early Modern NL GK using Hamiltonian method
(Darboux Theorem) in slab:
Dubin, Krommes, Oberman, and Lee, PF 26, 3524 '83
( Electrostatic)
Hahm, Lee, and Brizard, PF 31, 1940 '88
(Electromagnetic, canonical momentum formulation)

e Modern NL GK using phase-space Lagrangian
Lie perturbation method:
Hahm, PF 31, 2670 '88 (General geometry, electrostatic)
Brizard, J. Plasma Phys. 41, 541 '89
(General geometry, electromagnetic)



References on Nonlinear Gyrokinetic Theory II.

e Robustness of NL GK formulation in the high amplitude
DK regime:
Dimits, Lodestro, Dubin, PF-B 4, 274 (form of eqns unchanged from
Hahm-Lee-Brizard '88)
o NL GK for strongly rotating plasmas:
Brizard, PoP 2, 459 '95 (in terms of toroidal rotation)
Hahm, PoP 3, 4658 '96 (in terms of £)
e Energy conservation theorem:
Brizard, PoP 7, 4816 '00
Sugama, PoP 7, 466 '00 (introduction of field theory)



References on Topics related to Modern NL GK
using phase-space Lagrangian Method

e Bounce-averaged Nonlinear Kinetic equation
Fong and Hahm, PoP 6, 188 '99 (electrostatic)
Brizard, PoP 7, 3238 '00 (electromagnetic)

e High frequency linear gyrokinetic theory:
Qin and Tang, PoP 11, 1052 '04 (recovery of compressional Alfven
wave, elucidation of differential geometrical meaning of pullback

transformation





