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Summary
Mottvation

Wave-pariicle dynamics
simple limits of this interaction
One wave number
Hydrodynamic case
Kinetic case
seversl wavenumbers
Quasilinear spreading
Stochastic/chaotic regime
Prescnbed/self-consistent field
Less simple (but important) limits

Objectives

Tutorial
Caveats
Phase space resolution in kinetic codes
Measurement of numerical transport
Folklore about Landau damping
Plasma physics as statistical phvsics
Plastna physics as chaos theory



Why bothering with this ?

Universality of the wave-particle problem
Space plasmas
Particle acceleration
Anomalous dissipations
IWagnetic fusion
Heating by waves
Kinctic instabilitics

Universality of the 1D wawve-particle interaction paradigm
Classical Langmuir wave prohlem
Heating waves acting thrnugh E
Trapsit fime magnetic pumping
Interaction of fast pariicles with low frequency
MHD modes: transport in r, v, unaffected
Drift waves and zonal flows



Wave-particle interaction:
The simplest case corresponds to one electron
in the field of a Langmuir wave

Langmuir waves correspond to vibrations of the electrons
with respect to the ions {(zlong the magnetic field if
present); essentially 1 dimensional.

In the presence of a Langmuir wave cne electron may be
trapped or passing; a separatrix separates these two types
of motion.

Trapping 1s 4 strong resonance;
Average electron velocity = wave phase velocity
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One electron has a negligible action on the wave, What
aboutl many ?

Need for a symmetrical description of waves and
particles: Now derived by successive steps.
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Wave-particle interaction for heating waves acting
through E

. TF ~n '
A particle at r sees a field ~ €XP thff TR Y *-wi']

If ry(t) modulated with one or several periods, Fourier
analysis yields components of the type

exp L[kﬂr}j 1( w+Zn -Q)t]
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This brings the resonance condition
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Magnetic moment approximately conserved:
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Force on magnetic moment; 7 = —uVA

similar to Landau damping with substitution:
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For low frequency waves in a tokamak, wave-particle
resonance translates mto an eye of cat in (x,1,)
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” Farticle looses energy when I, Brows.
Fix)

Unstable case
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] Local effect

Y Avalanche

Trapping into banana orbits also possible
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Drift waves and zonal flows
behave like particles and waves

Drift waves may be described by a wave kinetic equation
which is similar o a Vlasov equation where v becomes k

The zonal flow behaves like a wave exchanging energy
with the pseudo-particleg
Trapping possible!



The dynamics is delined by a self-consistent
- Hamiltonian

= ;_?;-;-zu ZZ v/ L costk;ay — 6;),

[=1 F=1 {=1 ji=]

A is made up ol {ree particle ters, of harmonic oscillator
terms, and of coupling terms.

The coupling ferms take on a natural structure tor the

potential of a Langmuir wave:

- 11 is sinusoidal in space

- also in time in the limit of a small coupling: A evolves
like ay f + ¢

- its amplitude scales like the square root of the wave
ENeIgy.

The structure of the coupling unplle:s th& constant of the
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which is the total wave-partlcle: momenturn.
‘The growth or decay of a wave impacts ¢n particles.



The self-consistent dynamics was originally
derived by mixing a Vlasovian
and a granular description of the plasma

H1s the gencralisation to M>1 waveas of the self.
consistent dynamics infroduced with M= for describing
the saturation of the cold beam-plasma instabi Ity

Onischenko et al., 1970

O'Neil et al., 1971

Mynick and Kaufman, 1978

Tennyson, Meiss, and Morrizor, 1994

Found 10 be a general model tor electrostatic instabilities
del-Castillo-Negrete, 1998
Crawford and Jayaraman, 1999

Describes vorticity dvnamics i marginally stable shear
flows: del-Castillo-Negrete, 2000

Generalised to the case with scurce and sink
Berk, Breizman, and Pekker, 1905

Denvation from a description of the plasma as a N-body

system
Antonti, Elskens, DFE, 1498



Langmuir waves can be described
as harmonic oscillators

For describing Langmuir waves, the plasna cun be
considered as a set of N* electrostatically coupled
parucles in a 1D system with spatial period L,

Looking for the small collective ascillations of this
mechanical system with a wave-number k leads 1o the
Bohm-Gross dispersion relation,
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These eigenimodes are the Langmuir waves.

In the linear regime their frequency is amplitude
independent: these vibrations are harmonic nsciilators,

Caveat: particles may not be resonant or close to
resonance with the wave (Bohm and Gross, 1949),

The harmonic oscillator mode! is the analogue for waves
of the free particle model for partic'es.

Need for a description of the case where there are tesanant
particles.



Wave-particle interacrivn is cast
info an explicit mechanical system

Avie

™M waves
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We separate the N* clectrostativally coupled particles of a
plasma with spatial period L into N (gi] particles and N*-
N bulk particles.

A rigorous classical mechanics calenlation cnables tu go
from the original N**_body problem to a field paricle
interaction problem:
- N resonant particles
- M harmonic osciliators defining the field:

M Langmuir waves due to the collective vibrations of
the bulk,
N+ M << N*



The mechanical approach enables considering one
mechanical realisation of the plasma

An equilibrivm is found if particles are set on monokinetic
beams, and if each beam 1s an array of particles
(destructive interference of spontaneous emissions).

Partly reminiscent of Dawson mul:i-beam approach
(1960).

Perturhing this equilibrium leads to a Floque? problem at
2{N+M} dimensions which is explicitly solvable!

One finds the (hatural) result that a given wuave-number
correspoads to 2 sigenumodes per beam.

One wave is the sum of many efgenmodes.

Only one if no resonant particle (Bohm-Gross case)

Only finite Fourier sums are used in this caleulation.
The Vlasovian approach involves the Fourier and Laplace
transforms, pole bunting, and analytical continuation.
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Physical interpretation. cold beams

~143 '
q |:|l_1_l| = LL.IIJG-} _-“--F-:- - :-'"

31.'21,-2

3 =13 ;.
/ q {k.l ] ':!JF}J




| i I ™~ = —= T 1 T T T T T T r 1 T T T T T T Y e
i
—4 M [~ .
1 -
!
—
_ inm .._u....-._.. : =15
_ \Mu
g
H L
Lo
Qo
| L 1 :
;o
i 2
_. & ALE: W b
£ el '
......... AL e e P i . ; T P e !
| ..___
I
2 I ;| -
] :
_ !
h
__ .r-.r-
.
1
v | | I |
..,,....
Rhoihy
P - xx + 0
: i
- ! i
: X : E m
I i ! 1 I | | T 1 1 | E i k 1 T ] i A i _ | 1 | e A
oF - 1 1} - :
ynmmmmnmMwum;mmmmqhmmmmﬁmMmmMﬂ
! - = o o ] e = # . - ? q 5 = RET & g Ol S G U



T

10 Time evolution of the singfe-wa ve—particle sy

slermn

:._.i
[4,]
I f

Doved o ol (2001]
Fivrpe eh~ . (2 pol)

&)




The classical Landau-van Kampen theory
is recovered by using mathematical toels
not more intricate than the finite Fourier sum

Equilibrium: - vanishing wave amplitudes
- particles set on monokineic beams which are arrays of
particles.

Perturaing this equilibrium leads to a 2(N—M) dimensions
Flogquet problem which s explicitly solvable!

In the limit where N and the number of beams are large
(Vlascvian limit), the beam modes correspond to the van

Kampen-Case modes. Fgf T
13 "

If the slope is negative, an initial perturbation sin(kx) “*/
damps with time like exp(» |t]) ; % < 01is the Landau
damping rate. Landac damping = phase mixing.

If the slope is positive, an initial perturbation sin(kx)
grows with time lige exp(y; t) + exp{-; t) - exp{(-: [t])
Result found by Y. Elskens (2002) as a result of a remark
by A. Samain. Vlasovian limit highly singular!

Absolute values reflect the reversibility of Hamailtonian

dynamics.
Caveat: model recovering Landau damping with one
damped wave! Fvr A
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F.andan damping cannot carrespond
to an eigenmode

The reversibility of Hamiltonian dynamics irplies thet
elgenvalues occur in conjugate pairs.

A Landan unstable mode occurs with a damped mode
which cannot hide the unstabls one.

If Landau damping was a dairped eigenmaode, 1is unstable
companion would dominate!

This explains why in the classical Landau caiculation the
instability corresponds to an cigenmode, but not the
damping.



I.andau damping is the exponential relaxation toward
the thermal level

Coasidering random initial positions and phases,
perturbation theory at second order in the coupling
parameter v yields
d{f : _
Wi —» ey e+ s
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S corresponds to the spontaneous emission of waves by
particles. Goes to 0 in the Vlasovian limit (N infinite).

|ES) ~ I:\\

I =

*E
For N finite, Landau damping 15 the relaxation of
Langrmuir waves toward their thermal level.

The Viasovian limmit is highly singular,
: ]
This straightforward calculation works tor both nstability

and damping.



Synchronisation or diffusion are the sicnatures
of the Landau effect on particles

A similar calculation yields the average force acting on a
particle for a single Langmuir wave with 3. <0 or . >0

The force fiuctuztes about zero in time.
L BV F S
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Landau effect corresponds to a syncaronisation of
varticles with a single wave. [ iperiment. Dol ;["h.curfDFF
Trapping has no role in the Landau effect. PRL Lo9g
It is a weakly resonant effect.
Caveat: the surfer model!
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[n the case of a broad spectrum of Langmuir waves the
previous second order calculation leads to the QL Fokker-
Planck equa:ion for the evolution of the particle
distribution function

Diffusion tends to diminish the slope of the distribution
function:  Gain or loss of particle momentum

R % Loss or gain of wave amplitude.

e




Wil

Traditional quasilinear theory takes advantage of
the stochastic character of the waves,
not of chaos in the particle motion

To understand particle diffusion it is useful to first consider the case of a
nrescribed set of M Langmudr waves with randam phases,

Fa
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If the wave spectrum is broad, classical perturbation theory predicts
A= 2Dg b, <kPAx®m= 2 KD, 0 3
for T, <<t €< Trae = Min{ Tepread, Taiser)
2 -1 . .
Topres = (K" Do) ™, T = (KAVspecum) s Taeer={kAAv, Y.
Averages over the random phases,

Diep. 18 defined over a time where the spreading of orbits is neglipible
{chaos unimpoytant).

The diffusion is due to the randomness of the field, not to chaos in the
motion: it 15 stechastic, not chaotic.

Topread DOUNGS the time over which the dependence of x(t) ovar M phases
is small.

20



Diffusion may be stechastic or chaotic

For a prescribed set of M Langmuir waves with random
phases several scenarios are observed numericaily asa pv

function of the resonance overlap parameter <\ '
¥ = {.ﬂ.\ﬁ ‘l‘ﬂ‘i."l)}'ll ﬂ\-q} AH;I . 3 i
M e i -N'I .
Hna:._n—— i Vicoslksa —wit+o) L
2m : X
g=1
A small s means no chaos; the dynamics feels the
discreteness of the wave spectrum for ¢ = Tdisf(k&%)":
the dyaamics is quasiperiodic and <Av’> saturates.
The initial QL diffusion (predicted by perturbation
theory) is stochastic, not chaotic. '
T\{ Y / p'/p%" L
sy,
7t Ty 2.3 5

A large 5 means strong chaos; the dynamics stays
diffusive and QL for long times: chaotic diffusion,

Feor intermediate values of s with global chaos, D is
initially QL {stochastic), then becomes superquasilinesar
(chaotic); Cary, DFE & Verga, 1990.

D =Dy for s large is by no means trivial!



Locality of wave-particle interaction and the lack of
confinement in veloeity due to chaos
imply diffusion

The origin of the chaotic diffusion can be understood with
the concept of resonance box.

The larger [v-w/k|, the smaller the influence of the wave

on the particle;
Even in the chaetic regime, waves strongly noa
resonant may be treated through perturbation theory:
There is locality in the interaction.

For strong resonance overlap, only waves with
v-fk| < AV po; ~ (Dor/k)* contribute 1o the chaotic
transport (Bénisti & DFE, 1997).

[l + r )
Since vhaos makes the orhit unconfined mn v, 1t II :
Visits a series of resonance boxes of width 2Av poy :
Where the wave random phases are independen.

N T
L ;

The veloeity undergoes a series of independent (
[ncrements. Yields a diffusion according to the Lj 1

central limit theorem. I\

A =andom initia] particle position only does not
yield a Gaussian statistics to the velocity:
Randomness of the phases is important.



Quasilinear theory was developed to describe
the weak warm beam-plasma instability
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Vedenov, Velikhov & Sagdeev, 1562

Drummond & Pines, 1962
(Quasi linear: mode couplings are neglected except for
their effect on the space averaged distribution function
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Quasilinear assnmption is wrong
in the saturation regime

Velocity diffuses, but positions spread faster
<Avi>= 2 Dot <Axt= 21Dyt /3
APax®> ~1 for 1= Tomeaa= (k" Dy ) ™"

QL assumption is correct for the weakly nonlinear initial
regime of the instability
Close to ballistic motion; v <= Tepread

However saturation involves » ' >> Tepresd 0 @ strong
mode coupling is seen rumerically anc experimentally.

Though QL assumption be wrong, QL equations might be _
correct: True or false ? A

f.ﬁl.
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Kinetic instability with wave and damping makes
possible time dependent NL effects

dF_ N
=P (R -F)
X Damping of E duc to collisions, cte...
4 . (¥ Y
Tmportant patameter: Y /\ﬁr
/¢
*

MHD spectroscopy, Berk, Breizman et al, '95-"98
q (i), mode characteristics
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For strong resonance overlap there is a cross-over
between the initial non chaotie (JL regime
and the final chaotic ane

The traditional vequirement < k 2Ax Y(t)> <<1 for the initial
QL estimate forces x(t) to have a small dependence over
all M phases simultanecusly.

Let Av(t) = v(t) — v(0). The formal mtegratmn of the

equation of evolution of v revaals <Av i(t)> to take its QL
value 1f x(f) has a small dependence over any 2<<M
phases: this extends the temporal validity of the nitial QL

estimate up to ToL > Toyread (Bénustt & DFE, 1997),

Tor is computed rigorously by linear theory, since the
variation of x(t) 1s small when any two phases are varied

(DEE & Elskens, 2002): 7qL = Tspread (A Yy Topresalf Tor
strong resonance overlap (e.g. continucus spectrum).

I'hereiore D = Dy for t << 74

Spin oft : rigorous catculation of the Lyapunov exponenl
~ L/ Torad) OF the Chaotic dynamics.
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Quasilinear diffusion is correct over the whele chaotic
regime if resonance overlap is strong

The existence of a diffusion over a Hme T > Tapmad
meakes possible the rigorous extension of the QL estimate
up to the time where orbits hit the (KAM) beundanes of
the chaotic domain (DFE & Elskens, 2002 }.
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KAM #
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An independent rigorous caleniation shows that <dv/df> =
dDgy (v)dv: extension of the Landau formula (1937) for
the rezular regime.

On this basis the particles are shown to obey the QL
Fasker-Planck equation (DFE & Elskeas, 2002).

In fact the chaotic dynamics is truly Markovian only for
an infinite resonance overlap: no loss of memory in
Hamiltonian chaos after a time given by the inverse of the

Lyapunov expenent {t ~ Tygeaq)-



QL controversy: are QL eguations carrect
in the saturation regime ?

Laval & Pesme (1983) predictec a renormalization of the
growts rate and diffusion coefficient by 2.2.

Aimed at checking this prediction, a first experiment
reached a weakly nonlinear regime where mode coupling
was strong, but no renormalization was found (Tsunoda,

Doveil, Malmberg, 1921).

This was felt as a puradex, and motivated the new
mechanical approach.

Fhis approach was encouraged by the progress in the
understanding of low dimensional Hamiltonian chaos,

The Tsuntoda et al. experiment initiated a controversy
involving 20 analytical, numericel, and expenmental
papers over 2 decades.

Liaug and Diaciond (1993) and Shapiro and Sagdeev
(1997) denied any renormalization.



Chaos and the weakness of interactions lead to
QL equations in the saturation regime
of the weak warm beam-plasma instability

During the saturation of the weak warm beam-plasma
instability the dynamics enters the regime Tomag << 11"
where chaos is essential: strong mode coupling is present.

<Al>, <Api>, and <Ap *> related to [Lt+Af], t & At>>

Tspread €A1 be computed in this regime by taking advartage

of

1) the large spreading of particle positions at t >> Typng
[ntroduces chaoric random phases,

2) the absence of direct interaction between 2 particles or

2 waves: simpler than Boltzmann’s problem,

3) the weak mutual influence between anv particle and

any wave: mean field limit.

(L. equations turt out to be correct in the regime
Tomead <L (DFE & Elskens, 2002),

The derivation 1s made up of a few explicit steps which
can be easily followed by a graduate student (6 pages in
PoP, May 2003). Noi yer rigorous.

This result iz not & trivial extension of the initial QL

regime: Non QL estimates hold for 1,0 ~ %!
Confirms a conclusion reached hy Laval & Pesme (1933).



Conclusion

Wave-particle dynamics
¢ 2 types of coupled abjects: waves and particles
Simple lirits of this interaction
One wave number
Ilydrodynamic case ™ ¢/ Trapping
Kineti¢ casc _’;'H -{_ L.Ub ~ H
Several wavenumbers
Quasilinear spreading«diffusion and pengtration
Stochastic/chaotic regime £ 5> T g0
Prescribed/self-consistent field:
*# Chaotic decorrelation
Less simple (but important) limits:
+ Time dependent nonlinear state
» MHD spectroscopy, Pinches PPCF 2005
Caveats
Phase space resolution it kinetic codes
Measurement of numerical transport
Folklore about Landau demping
Plasma physics as statistical physics
From N body tn irreversible evolution by chaotic
mechantcs
Plasma physics as chaos theory: resonance box concept
Eiskens, DFE, Microscopic physics of plasmas and chaos,
TIOP 2003

Future

Self-consistency in fast particle-wave interaction
Non Valsovian effects





