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1.1 Introduction

Transport barriers at the plasma edge are key elements of high confinement
modes (H–modes) in fusion devices. These barriers, characterized by a local
steepening of density and temperature gradients, are strongly linked to
shear flows that reduce significantly turbulent heat and particle transport.
During a transition from low to high confinement (L–H transition), an
edge transport barrier builds up spontaneously [1, 2, 3]. A barrier can
also be produced by externally driving an ExB shear flow via edge biasing
techniques [4, 5, 6].

In the most promising operational regime of future reactors, the edge
transport barrier is not stable but relaxes quasi-periodically. During such
fast relaxation events, turbulent transport through the barrier increases
strongly and the pressure inside the barrier drops. Thereafter, the barrier
builds up again on a slow, collisional time scale. The basic physical mech-
anism underlying these relaxation oscillations is not fully understood. In
particular, there is no universal explanation why the plasma, instead of
remaining in a state of marginal stability, oscillates close to stability lim-
its. Currently, transport barrier relaxations are modeled by phenomeno-
logically constructed dynamical equations for the amplitudes of relevant
modes [7, 8, 9, 10].

Here, we propose three dimensional (3D) fluid turbulence simulations
and subsequent one dimensional (1D) modelling to investigate non linear
barrier dynamics [11]. In the simulations, a barrier is produced by an ex-
ternally imposed ExB shear flow and it is found to relax quasi-periodically
in a range of ExB shear rates. This behavior persists even if the ExB flow is
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frozen, i.e. turbulent flow generation is suppressed. Hence, the mechanism
at work departs from previously reported explanations based on turbulent
shear flow generation [12, 13]. The relaxation dynamics is found to be gov-
erned by the intermittent growth of a mode localized at the barrier center,
characterized by low poloidal and toroidal wavenumbers. A one dimen-
sional (1D) model for the dynamics of this mode is derived. An analytical
study reveals that the effect of the ExB shear flow is different from a shift
of the linear instability threshold. In fact, the dynamics is found to be
governed by a time delay for effective velocity shear stabilization.

1.2 Model for resistive ballooning turbulence

Resistive ballooning mode (RBM) turbulence at the edge of a tokamak
plasma is modeled by reduced resistive magneto–hydrodynamical (MHD)
equations for the electrostatic potential φ and pressure p [14],

n0mi

B2
0

(∂t + ~uE · ∇)∇2
⊥φ = ∇‖j‖ −Gp +

µi⊥0

B2
0

∇4
⊥φ , (1.1)

(∂t + ~uE · ∇) p = Γp0Gφ + χ‖0∇2
‖p + χ⊥0∇2

⊥p + S(r) , (1.2)

where the coefficients are evaluated with reference values of the density
n0, the pressure p0, the magnetic field B0, the perpendicular collisional
ion viscosity µi⊥0 and the effective parallel and perpendicular collisional
heat diffusivities χ‖0, χ⊥0. The ion mass is designated by mi and the
adiabatic index is Γ = 5

3 . Equation (1.1) corresponds to the charge balance
in the drift approximation involving the divergences of the polarization
current, the parallel current, and the diamagnetic current, and viscous
effects, respectively. Equation (1.2) corresponds to the energy balance
where S(r) represents an energy source located at the plasma core. The
compressibility of diamagnetic current ~jdia = ~B/B2×∇p and electric drift
~uE = ~B/B2 ×∇φ gives rise to curvature terms,

∇ ·
(

~B

B2
×∇f

)
≡ Gf , with f = p, φ . (1.3)

In this MHD model, the diamagnetic velocity is neglected with respect to
the ExB velocity, and the parallel current is evaluated using a simplified
electrostatic Ohm’s law, η‖0j‖ = −∇‖φ, where η‖0 is a reference value of
the parallel resistivity.

The magnetic field is described by

~B = Bϕ

[
êϕ +

r

Rq(r)
êθ

]
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Figure 1.1. Electrostatic potential corresponding to a linear ballooning mode

in the poloidal plane ϕ = 0.

in toroidal co-ordinates (r, θ, ϕ), where R is the major radius and q(r) is
the safety factor. Assuming a monotonically increasing safety factor q(r),
the domain chosen here covers a region between q = 2 and q = 3 at the
plasma edge. At the vicinity of a reference surface r0 corresponding to
q = q0 = 2.5, a linear approximation of the inverse safety factor is used,

1
q

=
1
q0
− R0

Lsr0
(r − r0) .

Here Ls is the magnetic shear length at the reference surface.
Resistive ballooning modes are the eigenmodes of the system (1.1, 1.2),

linearized with respect to the equilibrium state

φ̄(r) = 0 , ∂rp̄(r) = − 1
χ⊥r

∫ r

rmin

r′S(r′)dr′ = − 1
χ⊥

Γtot(r)

→ p̄(r) = − p0

Lp
(r − a) for r ≥ rq=2 ,

(1.4)

where the source S(r) is radially located between rmin and rq=2 such that
the total energy flux Γtot = (1/r)

∫ r

rmin
r′S(r′)dr′ is constant in the main

computational domain between rq=2 and rq=3. Here, Lp = χ⊥p0/Γtot is a
characteristic value of the pressure gradient length and a is the outer radial
boundary of the plasma. The equilibrium (1.4) is unstable if the pressure
gradient −∂rp̄ is larger than a critical value κ0. In this case, resistive
ballooning modes

(
φ̃
p̃

)
(r, θ, ϕ, t) =

(
φ̂n

p̂n

)
(r, θ) exp(inϕ + γt) ,
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characterized by the toroidal wavenumber n, have a positive growth rate γ.
Fig. 1.1 shows the structure in the (r, θ) plane of such a mode for n = 18.
The mode balloons at the low field side θ ≈ 0 (to the right in Fig. 1.1),
where the magnetic curvature

(
~B

B
· ∇

)
~B

B
≈ 1

R0

[
sin θêθ − cos θêr +O

(
a

R0

)]

is in the same direction as pressure gradient (∂rp̄) êr. The mode can be
decomposed into a series of Fourier modes

(
φ̂n

p̂n

)
(r, θ) =

∑
m

(
φ̂mn

p̂mn

)
(r) exp imθ ,

where m is the poloidal mode number. Each Fourier component (φ̂mn, p̂mn)
(r) has a characteristic radial width ξbal with ξ2

bal = min0η‖0L2
s/

(
τintB

2
0

)
.

In a strongly ballooned case, i.e. if (φ̂n, p̂n)(r, θ) is strongly localized at the
low field side θ ≈ 0, the growth rate γ is close to the interchange growth
rate 1/τint with τ2

int = R0Lp/
(
2c2

S0

)
, where cS0 is the reference sound

speed with c2
S0 = p0/ (n0mi). Note however, that in typical cases as the

one shown in Fig. 1.1, the growth rate γ is considerably lower compared to
1/τint, as the mode is stabilized by its components on the high field side
θ ≈ π where the magnetic curvature is opposed to the pressure gradient.

The system (1.1, 1.2) can be normalized using the characteristic time
is τint and perependicular length ξbal,

t

τint
→ t ,

(r−r0, r0θ)
ξbal

→ (x, y) ,
R0ϕ

Ls
→ z ,

τintφ

B0ξ2
bal

→ φ ,
Lpp

ξbalp0
→ p .

The normalized system takes the form

∂t∇2
⊥φ +

{
φ,∇2

⊥φ
}

= −∇2
‖φ−Gp + ν∇4

⊥φ , (1.5)

∂tp + {φ, p} = δcGφ + χ‖∇2
‖p + χ⊥∇2

⊥p + S(r) . (1.6)

with the coefficients

δc = 2Γ
Lp
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µi⊥0

min0
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s

χ‖0 , χ⊥ =
τint

ξ2
bal

χ⊥0 .

As the width of the radial domain considered here is small compared to the
minor radius of the reference surface, i.e. rq=3−rq=2 ¿ r0, a slab geometry
can be used in the numerical code leading to a simplification of the poloidal
and toroidal derivates via r−1∂θ → r−1

0 ∂θ and R−1∂ϕ → R−1
0 ∂ϕ. The

normalized operators then take the form

{φ, · } = ∂xφ∂y − ∂yφ∂x , G = sin θ ∂x + cos θ ∂y ,

∇‖ = ∂z +
ζ

q
∂y with ζ =

Lsr0

R0ξbal
, ∇2

⊥ = ∂2
x + ∂2

y .
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Figure 1.2. Radial profiles of the poloidal flow U (left) and the source S (right).

1.3 Formation of a transport barrier

In the present model, a transport barrier is generated by externally impos-
ing a locally sheared poloidal ExB flow. A corresponding drive is added
to the equation for the poloidal flow, i.e. the magnetic flux surface average
〈. . .〉θϕ of Eq. (1.5),

∂tūθ = − 1
r2

∂rr
2 〈ũθũr〉+ ν∂r

1
r
∂rrūθ − µ (ūθ − U) , (1.7)

where ūθ = 〈uθ〉θϕ is the flow profile and ũr,θ = ur,θ − ūr,θ are the fluctua-
tions of radial and poloidal velocity. The first two terms on the right hand
side of (1.7) correspond to the divergences of the Reynolds stress and the
viscosity stress, respectively, and the last term has been added artificially to
account for the friction with an external flow U . The latter is chosen to be
strongly sheared at the position r0, U(r) = ωEextd tanh [(r − r0) /d] + U0,
where ωEext is the maximal shear, d is width of the shear layer (here
d/ξbal = 13), and the constant U0 is adapted such that the corresponding
potential Φ =

∫ r
U dr vanishes at the boundaries of the radial domain.

The radial profile of the flow U is plotted in Fig. 1.2 (left).
In the absence of external drive (i.e. µ = 0), a poloidal flow is generated

by turbulent fluctuations via Reynolds stress. This mechanism generates
both, a mean component (finite time average) and a fluctuating (in time)
component of the poloidal flow. The latter corresponds to the so called
zonal flows [15, 16]. With increasing µ, the friction with the imposed
flow gets important, the time averaged profile becomes dominated by the
imposed one, and the deviations from that profile get smaller (Fig. 1.3).
In the limit µ →∞, the poloidal flow ūθ becomes identical to the external
flow U (frozen flow case). This limit is simulated in the numerical code
by using a finite value µ much larger then ν (ξbal/d)2 (here µ = 2) and
suppressing the Reynolds stress term in Eq. (1.7).

The localized flow shear leads to a local reduction of turbulent trans-
port [17, 18, 19]. A steepening of the pressure gradient then follows from
the energy flux conservation. The latter is a consequence of the magnetic
flux surface average of Eq. (1.6),

∂tp̄ = −1
r
∂rr (Γturb + Γcoll) + S , (1.8)
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Figure 1.3. Time average profiles of the velocity shear (left) and root mean

square fluctuations of these profiles (right) for different values of the friction

coupling constant µ, and ωEext = 2, Γtot = 8.

where p̄ = 〈p〉θϕ corresponds to the pressure profile, Γturb = 〈p̃ũr〉θϕ and
Γcoll = −χ⊥∂rp̄ correspond to the turbulent and collisional radial energy
fluxes, respectively. Here, p̃ = p − p̄ are the pressure fluctuations. The
source S is located in an artificial (“buffer”) zone outside the main compu-
tational domain between rq=2 and rq=3 (see Fig. 1.2, right). It determines
the total energy flux Γtot across a magnetic surface in this radial domain. In
time average, according to (1.8), a local reduction of turbulent flux Γturb

by an ExB shear flow leads to an increase of collisional flux Γcoll, i.e. a
steepening of the pressure gradient |∂rp̄|. Fig. 1.4 shows radial profiles of
the time averaged turbulent flux and pressure for different values of the
maximal shear ωEext.
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Figure 1.4. Time averaged profiles of turbulent flux and pressure for different

values of the maximal shear and Γtot = 36, µ →∞.
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1.4 Appearance of relaxation oscillations

In typical RBM turbulence simulations with a transport barrier gener-
ated as described above, the barrier is not stationary but relaxes quasi-
periodically. In Fig. 1.5 (left), the dynamics of the pressure gradient, the
turbulent flux, and the poloidal flow shear are shown, all values are taken
at the barrier center (r = r0). The evolution of the pressure gradient is
characterized by phases of a slow increase quasi periodically interrupted by
rapid crashes. The latter correspond to relaxations of the barrier and are
associated with large peaks of the turbulent flux at the barrier center as
well as fluctuations of the velocity shear at the barrier position.

These relaxation oscillations are found to persist even if the poloidal
flow profile is frozen. Fig. 1.5 (right) shows the corresponding results from
a simulation with the same parameters as in Fig. 1.5a except that the
friction coefficient is set to µ →∞. In this case, the velocity shear profile
is constant in time but intermittent flux peaks with relaxation of the barrier
do appear.

When varying the maximal ExB shear ωEext and the total energy
flux Γtot, two opposite trends concerning the behavior of the oscillation
frequency are observed. The frequency increases with Γtot (for fixed ωEext)
and decreases with ωEext (for fixed Γtot). However, in tokamaks, the ExB
flow shear increases with the heating power [20]. It is found here that if this
increase is faster than linear, the actual relaxation frequency decreases with
power. This is illustrated in Fig. 1.6 where the dynamics of the turbulent
flux is shown for two cases. With respect to case (a), the heating power
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Figure 1.5. Time evolution of pressure gradient normalized to the diffusive

value, ∂rp̄/ (−Γtot/χ⊥), turbulent flux normalized to the total incoming flux

〈p̃ ũr〉θϕ /Γtot, and relative deviations of the poloidal flow shear from the im-

posed value (∂rūθ − ωEext) /ωEext, at the center of the barrier. Here, ωEext = 8,

Γtot = 36, and µ = 0.02 (left) respectively µ →∞ (right).
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Figure 1.6. Dynamics of the turbulent flux at the barrier center for (a) Γtot = 9,

ωEext = 2 and (b) Γtot = 36, ωEext = 12.

is four times larger and the ExB shear is six times higher in case (b).
Obviously, in the latter case, the relaxation frequency is lower.

For the relaxation oscillations of transport barriers observed here, sev-
eral possible mechanisms can be excluded.

(i) As mentioned above, the relaxation mechanism at work here departs
from explanations based on turbulent shear flow generation. In fact,
the behavior persists even if the ExB flow is frozen, i.e. turbulent flow
generation is suppressed.

(ii) Resistive ballooning modes are global modes with a large radial ex-
tend. In general, in the simulations presented here, these modes are
linearly unstable due to the components localized in the regions far
from the barrier. As will be shown in the following, the components of
the global modes localized at the barrier center are almost vanishing
during quiescent phases but get rapidly excited during a relaxation
event. This could be an effect of the toroidal coupling of the Fourier
components of a global mode, leading to a pumping of the part local-
ized at the barrier center by the unstable components localized at the
shoulders. However, as can shown in Fig. 1.7 (left), no precursor on
the directly coupled neighbors at the barrier shoulder, (m,n) = (4, 2)
and (6, 2), is observed prior to the growth of the central (m, n) = (5, 2)
mode. This is also true for the neighbors (m,n) = (8, 4) and (12, 4) of
the next order central mode (m, n) = (10, 4).

(iii) The growth of a perturbation at the barrier center could in principle
also be triggered by large scale transport events [21, 22, 18], as these
high flux perturbations propagate radially over large distances. How-
ever, the amplitude of such bursts decreases strongly as they approach
the barrier [18]. On the contrary, one observes that a relaxation event
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Figure 1.7. (left) Time evolution of amplitudes (of the potential) of different

(m, n) modes during a flux peak. (right) Time evolution of a perturbation of the

(m, n) = (5, 2) mode in a restarted simulation (solid line) compared to the curve

obtained from Eq. (1.12) (dashed line), as explained in the text.

leads to a flattening of the pressure gradient at the barrier center and
an isolation of two regions of steep gradient on both sides. These steep
gradients are then propagating radially away from the barrier center
(Fig. 1.8).

(iv) The strong velocity shear at the barrier center can in principle generate
a Kelvin–Helmholtz instability. In contrast to the resistive ballooning

Figure 1.8. Mean pressure gradient versus radius and time during a relaxation

(top) and in a quiescent phase (middle), and its time average during both phases

(bottom).
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Figure 1.9. Snapshots of electric potential fluctuations in a poloidal plane in a

quiescent phase (left) and during a relaxation (right). The radial co-ordinate is

stretched by a factor 4 (comp. Fig. 1.1). Only positive values are shown, from

zero (light gray) to the maximum (black) of 160 (left), respectively 410 (right).

The relaxation is dominated by a (m, n) = (5, 2) mode which is the lowest order

(m, n) mode localized at the barrier position.

instability, this type of instability is independent of the magnetic cur-
vature. However, if the magnetic curvature is suppressed artificially
in our simulation, all turbulent fluctuations rapidly die out, indicating
that the system is Kelvin–Helmholtz stable.

The barrier relaxation oscillations observed here are governed by the
intermittent growth of a low poloidal (m) and toroidal (n) wavenumber
mode localized at the barrier center. As illustrated in Fig. 1.9, a relax-
ation event is dominated by a (m,n) = (5, 2) mode which is the lowest
order (m,n) mode localized at the barrier position. This is a rather sur-
prising result because one expects fluctuations localized at this position to
be strongly stabilized by the velocity shear. However, as will be shown in
the following by means of a reduced model, a transitory growth of a per-
turbation is possible due to the existence of a time delay for velocity shear
stabilization which is an intrinsically nonlinear effect.

1.5 Low dimensional model and non-linear short-term
dynamics of shear flow stabilization

A 1D model reproducing the dynamics of barrier relaxations is constructed
by decomposing the pressure into the profile p̄(r, t) and a perturbation
p̃(r, t)eimθ−inϕ localized at the barrier center, i.e. m/n = 2.5. In order to ob-
tain a simplified model involving only two fields, potential fluctuations are
supposed to follow pressure fluctuations via the relation φ̃ = ikθ/

(
γ0k

2
⊥

)
p̃.
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The latter is obtained from balancing the two terms governing the bal-
looning instability in Eq. (1.1), i.e. the time derivative and the curvature
term. Here, γ0 is the linear growth rate in the case of a constant pres-
sure gradient, ∂rp̄ = −1, and in the absence of mean velocity, magnetic
shear and dissipation. kθ = m/r0 and k⊥ are respectively, the poloidal and
perpendicular wavevectors of the corresponding mode, and a cylindrical
curvature G → r−1∂θ has been assumed. Supposing further a uniformly
sheared poloidal flow, ūθ = ωE(r−r0), projections of the pressure equation
(1.2) on the profile and the perturbation, respectively, lead to

∂tp̄ = − 2γ0∂x |p̃|2 + χ⊥∂2
xp̄ + S , (1.9)

∂tp̃ = γ0 (−∂xp̄− κ0) p̃− iω′Exp̃− χ′‖x
2p̃ + χ⊥∂2

xp̃ . (1.10)

with x = r − r0, κ0 = k2
θχ⊥/γ0, ω′E = kθωE , and χ′‖ = k2

θχ‖. The system
(1.9, 1.10) reproduces barrier relaxation oscillations for finite values of ω′E
(Fig. 1.10). Note that for a fixed pressure gradient ∂xp̄ = −κ, Eq. (1.10)
is linear and the growth rate for the most unstable radial mode is given by

γ = γ0 (κ− κ0)−
√

χ⊥χ′‖ −
ω′2E
4χ′‖

. (1.11)

This implies that for large enough flow shear ω′E , linear modes are com-
pletely stabilized. However, the dynamics of these modes describes only
the long-term behavior of the system, i.e. an asymptotic decay of the fluc-
tutations for sufficiently large flow shear. For the short-term dynamics,
a description in terms of linear modes is not appropriate. Indeed, if the
advection with the sheared flow in Eq. (1.10) is replaced by a shift of the
linear instability threshold, the modified system does always evolve to a
stable fixed point. In order to obtain relaxation oscillations with such a
model, one has to introduce phenomenologically further elements such as
a Heaviside function multiplying the instability term [10].

In fact, the short-term dynamics in the model (1.9, 1.10) is better
described by the evolution of an initial pulse p̃(x, t=0) = p̂δ(x), infinitely
localized at x = 0, that can be calculated analytically from Eq. (1.10) for
a given pressure gradient −∂xp̄ = κ and when neglecting the χ‖ term. The
solution takes the form

p̃ =
p̂√

4πχ⊥t
exp

(
− x2

4χ⊥t
− iω′Ex

2
t + γ′0t−

t3

3τ3
D

)
, (1.12)

where γ′0 = γ0 (κ− κ0) and τD =
(

1
4χ⊥ω′2E

)−1/3. Note that for ω′E = γ′0 =
0, the usual solution of the diffusion equation is recovered. The expression
(1.12) describes an initial transient growth of the perturbation for γ′−1

0 <

t <
(
τ3
Dγ′0

)1/2 before the cubic term in the exponential dominates the linear
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Figure 1.10. Time evolution of pressure gradient [∂rp̄/ (−Γtot/χ⊥)] and turbu-

lent flux (2γ0 |p̃|2 /Γtot) at the barrier center obtained from the 1D model (1.9,

1.10). Parameters are the same as in the 3D model and kθ = 0.05, γ0 = 0.8,

ωE = 1.1, Γtot = 1.4.

term, leading to a stabilization. The characteristic time τD for the transient
growth is large for small values of the perpendicular diffusivity χ⊥ (close to
the collisional value at the barrier center) and low poloidal wave numbers
m.

From this analysis, the mechanism for relaxation oscillations is as fol-
lows. During a quiescent phase, the pressure gradient increases slowly on
a collisional time scale. When it crosses the linear instability threshold,
fluctuations set in and the associated anomalous flux keeps the pressure
gradient close to the threshold, which tends to saturate the fluctuations.
However, the latter trigger the nonlinear mechanism described above, lead-
ing to a growth of the mode during a characteristic time of the order of
τD, even though the pressure gradient drops well below the linear stability
threshold due to the large anomalous flux. For the mode shown in Fig. 1.9
(right) we have τD = 8.7 in normalized units (with ωE = 5.5) which agrees
well with the temporal width of a flux peak. The transient growth of the
(m,n) = (5, 2) mode is reproduced [Fig. 1.7 (right)] when restarting the
simulation, initializing the (5, 2) mode with a perturbation and all other
(m,n) modes with noise, and keeping the pressure and velocity profiles ob-
tained from the simulation shown in Fig. 1.7 (left) just before a relaxation.
Moreover, this short term dynamics of the central mode is well described
by Eq. (1.12), as can be seen from the dashed curve in Fig. 1.7 (right) that
corresponds to p̃ = p1 exp

[
γ0t− t3/(3τ3

D)
]

with p1 = 1.2, γ0 = 0.42, and
τD = 10.

Note that well pronounced relaxation oscillations are found for values
of ω′E such that the linear growth rate (1.11) for the diffusive pressure
gradient κdiff = Γtot/χ⊥ is only slighly above the instability threshold. In
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this case, the recovery phase of the profile between to relaxations is long
compared to τD. In agreement with this picture, we find that a slight
increase of the value of ω′E leads to a completely stable situation without
any fluctuations. This is also consistent with the fact that the frequency
of relaxation oscillations decreases with the velocity shear ωE , as observed
in the 3D simulations.

1.6 Conclusions

In conclusion, 3D turbulence simulations with imposed ExB shear flow
show the formation of a transport barrier and the appearance of relaxation
oscillations. The analysis of these simulations reveals that this dynamics
is governed by an effective time delay in the stabilization by the shear
flow. This is confirmed by a reduced 1D model. The ExB flow shear in
tokamaks increases with heating power. It is found here that if this increase
is faster than linear, the relaxation frequency decreases with power. These
properties, onset of a transport barrier, relaxation oscillations associated
to resistive ballooning modes, and the oscillation frequency that decreases
with power, are reminiscent of so-called type III edge localized mode (ELM)
dynamics in tokamak edge transport barriers [23].
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